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PREFACE

THis text, plus LQaccompanying Study Monual® may be con-
sidered as constituting a method of feacking a first course in statistics
for students of ‘education and psychology. The distinguishing
features of these materials are as follows: _ '

1. They rely-primarily upon the Socratic method fo develop in the
student a reasoned undersianding of statistical techniques. L\

Students in first courses in statistics in education and psychology
have been prone to take a passive attitude in the learning\process.
Upon meeting concepts which they have rot readily nderstood,
they have often resorted to memorization of stérectyped inter-
pretations and have not made an insistent ?.Qd aggressive effort
to discover underlying meanings, They 4¥e been required to
spend so much time on the mechanics ofthe solution of computa-
tional problems that they have had Jittleitime ettt think about
the meaning of results obtained in piactical situations. They have
learned how to apply statistical £echniques only in the very limited
sense of knowing how to compute numerical results, but have not
tearned when and why hese techniques should be applied in
actual practice or howthe results obtained should be interpreted.
"They have often completed the first course in statistics with little
more than a stogkof arbitrary rule-of-thumb procedures and stere-
otyped generlizations. Because of lack of understanding of
basic printiples, they have been helpless in the many situations
to which\these procedures and generalizations do not apply, or have
tri,e\d,’ﬁvith false confidence and with unfortunate consequences,
thapply them to situations for which they are not intended.

In this text and study manual, through extensive use of the
Socratic method, an attempt is made to require the student to
take a more active role in learning. Much of what has formerly
been presented to him (for memorization) is here drawn out of him
through leading questions and suggestive illustrations. The prob-

" * Study Monuol for a First Course in Sigtistics. Revised Edition.
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lems and questions for discussion contained in the manual suggest
an unusually large number and variety of concrete fllustrative
situations which may be employed by the student to demonstrate
the uses a.nd limitations of each statistical technique considered.
‘These exercises are also intended to help him appreciate what are
the most 1mportant mathematical properties and essential char-
acteristics of each technique and what Is the significance of these,
characteristics in the interpretation of results. It Is left to the
student himsel, however, to develop these illustrations a.nd o
formulate in his own words the generalizations which they dapport.

2. These materidls siress as much os possible the uses ond inier-
prelation of statistics, and minimize as much as possibie the mathe-
matical theory of siatistics and the mechanics of computation.

Students in introductory courses in statistics in education and
psychology seldom have the mathematical training essential to a
ready understanding of the mathergatical theory of statistics.
The promxnence given to mathemafu:al derivations in many
coutses has, therefore, only contrlbuted to the student’s bewilder-
ment and has kept him from. dwotm%nhls time more profitably to
those interpretaive el uPEafistics which he can more readily
understandl The freqye\nt practice of requiring the student to
solve a large puml;e}\}f computational problems has sifuilarly' de-
tracted from the ise available for consideration of interpretative
aspects, and has neither contributed significantly to his under-
standing mot developed in him any skill in computation as such.
In thxsﬁsxt and manual, therefore, the mathematical and computa-
tlona}. aspects of statistics will be given only the minitaum con-
. ..sm&érahoé essential to an adequa.te treatment of® t];e interpretative

éspect.

The need for the greatest possible emphasis upon the inter-
pretatlve aspects of statistics in introductory courses has been ad-
mirably stated by Professor Helen Walker, of Teachers Colle
‘Columbm, Tniversity, as follows:* =

't Walker, Helen M., “Probl
o Bl Ko, e il of B Wk e

Febmary; 1933.-
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PREFACE e

Tt is relatively easy to conduct a course in either research methods
or statistical methods in such a way that students emerpe from it
with a confident faith in their ability to discover truth by routine
processes, a zeal for applying their new techniques to the first
data they can secure, and complete lack of any comprehension of
the great variety of ways in which it is possible to reach results
that delude rather than enlighten. In the long run, such courses
probably do more harm than good. Personally, the author does

* not believe in teaching, even in elementary classes, the application
of a technique whose limitations cannot alse be suggested.

An increase in the extent to which educators think in termsyof

* mass data, a growth in the ability to reason statistically,is of
enormous value, An increase in the number of personsiwho com-
pute partial coefficients of correlation with but little iden of their
meaning, may be considered of ro value at allf “It may be a
relatively easy task to induct an intelligent student into certain of
the computational processes employed in research, to show him
certain routines useful in experimentation and in the organization
of mass data, but it is a much more difficult task to teach him to
think straight, to know what assuniptions are implicit in the for-
mulas he employs, to know when those assumptions are inconsistent
“with the practical situatioy. in-gbichiha-isworking, to draw only
such conclusions as are Iog\ica},'and to make only such generaliza-
tions as are justifiable. Thig'difficulty is by no means lessened when
such teaching must he{conducted en masse and given to students
who bave carried over from their high-school days a distike of
numbers and an ﬁn}leasant emotional reaction to the use of alge-
braic symboligm,)

The longetlthe writer teaches statistics and the more disserta-
tions shesattempts to direct, the more profoundly does she believe
that\tiiez‘chief challenge to teachers of research methods is not to
praduce good computers and not to produce people who can
juggle algebraic formulas or who can inveat new terminology and

. o (mew procedures, but to improve the quality of logic which goes

} “into research.

3. These materials are relatively restricled in number of technique

considered. .

In the belief that it is better for the student to acquire a thorough
understanding of a few basic concepts and technigues than a
superficial acquaintance with many, only the most fundamental
and frequently used statistical techniques are considered in this
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text. Tt has been the author’s experience that to develop in the
student a satisfactory generalized understanding of any statistical
technique requires much more explanatory z}nd illustrative material
than has been included in most textbooks. The restriction in
the scope of this text and manual permits, without undue demands
upon the student’s time, the presentation of an adequate amount
of such material in relation to each technique considered. The
author believes that, if the student develops a thorough undegs
standing of the basic techniques included in this course, he(will
have little difficulty in interpreting for himself other more@pecial-
ized and less frequently used techniques if and when theéioccasion
to use them arises. _ ¢

4. These materials are designed particularly Jg)develop in the
student o critical aititude toword the use of slalistical methods in
education and psychology. <L\ '

Sound statistical judgment involvegs keen appreciation of the
inherent limitations of statistical techniques and of the original
data to which they are applied. In the derivation of these tech-
niques, assumptions are ire qge’ri,ﬂy made which cannot be satisfied
completely in practisalapilieiticfi€ " The failure to satisfy these
conditions necessitates-many qualifications in the interpretation
of the results obtaided. ™ These qualifications have frequently been
ignored in the condensed treatments made necessary in many texts
by the largg aumber of techniques included. In this text and
manual, m@jor -emphasis will “be placed upon the limitations of
statislgicé.l: methods, upon the many prevalent mjs&onceptions and
iaila.cie} . stat%stica,l thin]fingf and upon the many sources of
O involved in the use of statistical techniques. By these
) m?‘-“_nsz these materials are intended to devclop in the studeﬁt a
critical attitude and an appreciation of the fact that statistical
methods are an aid to, not a substitute for, common sense.

The-zse _a'nd other features of thiz first course in statistics are
-ex?la.med n g}'eater'.cletaﬂ and more definitely from the student’s
- point of view in the introductory chapter. It is highly important
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that the student be advised to consider these features carefully
at the beginning of the course in order that he may appreciate
fully the requirements made of him and may use the materials to
the greatest advantage.

These materials have been gradually developed by the author
through the use in his own classes of a series of mimeographed
preliminary editions which have been successively revised and im- ,
- proved through experience. It is the author’s opinion, based
upon this experience, that materials of this type may be mes.t
effectively used if the course is conducted on a ]aboratsry or
work-period basis, in which the instructor dispenses alimost en-
tirely with formal lectures and allows the student 4d/spend the
major part of each class period in supervised work-om the exercises
in the study manual. Tt is, of course, essential that the student
he given opportunity at frequent intervalg(te verify the results
of his own reasoning. This may be most'readily done through
periodic class discussion in whica thelinstructor presents and ex- -
plains the correct solutions tg.theygsarisssraltes they have been
independently attempted by all gtudents. When thus nsed, these
materials should prove adequite for a one-semester undergraduate
or graduate course meeting)three or four times per week.

The author is deeply\n\debted to many of his graduate students
who, during the course of the successive revisions of experimental
editions, oﬁered Yatiable suggestions for the improvement of the
maierial. Heas indebted also to Professor P. J. Rulon, of Harvard
Umversr.cy}wh() read the manuscript and whose criticisms were
of great-gssistance in the final revision. -

Gra’beful acknowledgment is made to Oliver & Boyd, Limited,
Edmburgh and to Professor R. A. Fisher, for permission to re-
print the table on page 240.

E. F. L1NDpQUIsT
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CHAPTER 1
INTRODUCTION

The Purposes of Statistical Methods in Education and Psychology~

\STATISTICAT methods are the mathematical techmques used o
facilitate the interpretation of numerical data secured from groﬁps
of individuals (or groups of observations s of a single mdlwdual)‘-"’
In education and psychelogy, the individuals oonsntutmg these
groups may be human beings variously clasmﬁed{such as school
pupils and teachers or subjects in the psychology laboratory), or
they may be administrative units (school dlasses, school systems,
school boards) Poh};gaj ggpgouns (schogl &Lsmcts, cities, counties,
states}, social or religious groups, homes school buildings — in
fact, any entities for which numencal data may be collected. The
data gathered may be scores on A CATORAT 5y BE§dRological tests,
direct measures of physical ttarts, enrollment and attendance fig-
ures, fiscal data (salanes,\mcomes, expenditures), census enumer-
ations, school marks lqt\mgs ages — or any other descnptwe facts
which may be expr.e'}Ed in numbers.

It is manifests that the student and research-worker in education
or psychology; the school administrator, and the classroom teacher
all have}:t"fequent occasion to interpret masses of data of the
types _}uk suggested. It should also be readily apparent that
Verthtle meaning can be der;xgd From such.data, in the unordered

orin in which THey are orlgmally collected.. . Until they have been

compactly and. systemaueally arranged;-and-until their description ,
" has been condensed into a.few derived measures which can be
conveniently handled such data cannot be adequately interpreted
- for any large group or mea.nmgfu!ly compared for different groups
The stat1st1ca1 methods which will be considered in this intro-
ductory course may be classified into three sets of techniques, ac-
cording to the major purposes that they are intended. to.serve:
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Qﬂe set of techniques will enable the student to organize group
~:" data, to describe and interpret these data in terms of derived
K»measures of central tendency (averuges), of variability, and of other
-;,,-_f acteristics of the group; and to portray these data in graphical
AN form for more mnvement interpretation or more ready assimila-
o tion. g
) 1A second set. of techniques will enable the student to describe_
quanntatwely the limits within which he may safely generalize
about large groups or populations on the hasis of facts denved
from relatively small groups or samples selected at xandom from
these populations. Nearly all research studies in.éducation or
psychology are of the type known as sampling stridfes. In these,
relatwely small groups of individuals are observed mvestzgated

k-ﬁ EilI tndividuals of the same type or from t‘he same popula.tlon In
\ any Sl study, there s “always the‘pgsaﬁnht‘yhj;h@t the sample of

,.‘*-\ " Individuals used may not be tmlj representative of

" population, since &anc&g&ﬁag{g@b@mdhthgmv stigator’s con-
% trol will always determme 0 some_extent which individuals will
“eotistitite the sa.mple egzployed Hence, any fact derived from a

[P L

“sample must alwa%ﬁe éég%t}grgd as only an approxmmtwn to
the corresponding “true” fact, that is, is, to the fact which would
have been obta.med had the entire population been studied. Under
_certain co ling, statistical techniques (sa,mphng
error form ) may be a.pphed to determine quantitatively how
m{y\‘tﬁese obtm&ed facts are likely to a,pprommate”'fhe true
f;;é:tns_ “Proper use of these techmques will help guard against the
P da.ngerous teridency to jump to conclusions based on too few ob-
servations and will enable the i nvestigator to qualify his generaliza-

tions in accordance with the reliability of the facts obtained.
o A third set of techniques will enable the student to describe
quantxtatwely the degree of  relationship existing between measures
wp,/ of different traltg,for any group of individuals or between any other
f types of pm measures, It is a matter of common observation

that there js some relationship between, for ezample, mtelhgence

i
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to be superlor in achaevement and pupﬂs of low intelligence tend
to be low in achievemefit. One cannot, however, obtain any
accurate quantitative idea of the closeness of this relationship on
the basis of direct observation alone, or make any quantitative-
comparisons of the relationship for different school subjects.
Mathematical techniques are required for these purposes, Thesé™
techniques are useful in the study of cause-and-effect reIaﬂonslups
between mental traits or abilities, in the evaluation of test maferials
(to describe test validity and reliability}, and in estunaﬂ:mg or
predicting certain unknown measures from known va.lues of related

measures, - ‘

The Major Aspects of Instruction in Smtistécs\\"

Entirely apart from these major purpoges'of statistical methods,
there are three aspects of statistics wlich have been variously
stressed in introductory courses in the subject. The first of these
has to do with the mathematlm"[‘f eglb)lcmuﬁgef‘fﬁnggthe derivation
of the techniques, the seoond “with the computatlona.l procedures
\mvolved in p,r,qctxcal apphgaﬂonsfand the third with the uses of
the techniquesand th.ex@terpretatlml of results in actual practice.

In this course, tha\first two of these aspects will receive no more
consideration thp.(i:i“s essential to an adequate treatment of the
third. Mathematical derivations will be considered only in as
far ‘as is\Aiecéssary to demonstrate the reasonableness of the
techniques and to draw attention to the important assumptions
madelin’ their applications. The specific mathematical skills in-
Yolved in the derivations presented will in no case go beyond those
which are considered as minimum essentials in elementary arith-
metic and ninth year algebra. No student, therefore, need feel
‘that he will be seriously handicapped by lack of training in ad-
vanced mathematics. No attempt, furthermore, will be made to
develop in the student any degree of skill or facility in the com-
putation of statistical measures. A great variety of computational
procedures have been developed for the fechniques considered in
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this coutse, mcludmg many which mvolve the use of computing
rachines and electric tabulating equipment. These procedures
are so various and complex that any early consideration of them
would only confuse the beginning student and would interfere
with his attainment of a real understanding of the essential
nature of the techniques themselves. In this course, therefore,
only the most straightforward and most readily understandable
computational procedures will be considered at all. The sthdént
will be expected to apply even these procedures i in onlyd very
few problems, and then only to contribute to the better under-
standing of the techniques rather than to developgn him any skill
in computation as such.

The maximure amount of the student’s time' will thus be made
available for the consideration of the mte\rp}etatlve aspects of the
course, I]l relation to each of the techmques considered, major

empha“.sxs in instruction will be plaoed upon questions such as the
following:

w  What are ¢ the Iggsgmgﬁ gnathematical properties and
major charactenstlcs of this technique? What assumptions
are involved in its\application?

. What spemﬁéuses may be made of it?  In what types of
situations s6ay it be validly applied?

Whapaee its major advantages and limitations in relation

7 1o other techniques intended for roughly the same purposes?
\H “How may the results of its. application be interpreted?
o\ How must this interpretation be qualified in terms of the
£ '\

" unique conditions under which it may be applied?

What common misinterpretations are to be avoided? What

~‘common faliacies in statistical thinking are related to the use
of this technique? =

Importance of the Inter>retative Aspect

This course, then wiil be essentially a course in the mterpretahm
of statistical techniques as they are applied in education and
psychology. The mathematical theory of statistics and the me-~
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chanics of computation will be minimized as much as possible.
There are a riumber of reasons for this distribution of emphasis
in instruction. One of these is that the typical student in thig
course is preparing for college or public school teaching, or plans
to enter the field of public school administration, and will not
engage In any significant amount of research, perhaps in little
more than is involved in meeting the requirements for an ad™\
vanced degree. If he is to attain any real insight into profess:sna.l
problems, however, he must be prepared to read profedsional
literature with understanding, and must continually keep himself
intelligently informed ahout the current research mvestlgatlons
and experiments reported in professional penodmaals Ifonlyasa
preparation for such reading, some training Jo\ Statistics is an
essential part of every student’s professional, equipment. Without
such training, most of what he reads professionally will be rendered
unintelligible by the frequent recurrenté of statistical terms, such
_ as correlation coefficient, pro&able oo ahllg‘rl‘aly d ewa:wn and
significant difference. To read these materiald wi h comprehen-
sion, the student obviously need have no skill in computa.tmnal
procedure, but he must be(prepared to evaluate critically the uses
that have been made, o{st‘atlstlcal technique by others, and must
be able to check their tonclusions against his own interpretations
of the results obtamed On the few occasions in which he may
need to a.ppl;( Statistical techniques himself, the student can
readily look™up the preferred computational procedure in available
references\and handbooks, and will have no difficulty in under-
étandiﬁg‘ the directions given if the essential nature of the tech-
nifue involved is well understood by him. The small Proportion
of ‘Students in this course who will later engage in extensive re-
search 6n their own account will in any event go on to advanced
courses in statistics, in which adequate consideration of the more
economical computational procedures involved in large-scale re-
search may be more properly given.

The lack of emphasis upon the mathematical theory of statistics
is as much a matter of necessity as of choice. The majority of
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standing of the uses ang interpretations of these techniques can
be acquired without tracing step by step the mathematics of their
derivation. The typi student can well afford to accept thé
mathematical derivations op faith and to devote hig time niore
profitably to questions of use and Interpretation, \

genera;l-purpo_se'. In one unit, for e;gglh]iie, all of the more widely
used methods of graphical Portrayahof group daty are considered

together; in another, al] of the o Gimpertant measures of central.
tendency (averaé(e‘ﬁfv'gperaae;cﬁ)‘qeii and co

mpared; another unit
treats measures of va.riabil}ty; .

. terpretation of the Tesultg obtained
om them. It i lef; to the student himself'to.develdp these illyg-
rations and to formulate and state in hig o :

Wi words the generaliza-_f
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tions which they support. In order that they may not be inor-
dinately difficult to the student, most of the questions will be
presented in a highly leading form, and each step in the RECessary
reasoning will be so clearly indicated that the student Wzll not be
likely to go far astray in his thinking.

This text alone, then, is not intended to constitute a complete
discussion of the techniques considered. On the contrary, many
of the interpretative statements which ordinarily would be (pre-
sented in a pat form in the textual discussion will be dehhe}a,tely
omitted in order that the student may be required to reach the
same conclusions by his own reasoning. This proogdure 1s based
on the sound pedagogical principle that knowledge which the
student acquires through his own independent\thinking is much
more likely to be understood and perman{nt\ly retained by him
than that which he has memorized in thé words of another. Es-
sentially, then, the student will be ez;pei:téd to write for himself an
~ important part of what will eventually constitute a complete
text, namely, that part which 1§ ¥3HURRUH BB With the use
and interpreiation of stahstxcal techniques. Each chapter in this
text will contain some ipterpretative materials and explanations,
but only to present thc@e concepts which the student cannot rea-
sonably be expected to discover or develop for himself.

- A special effort®as been made through thesé materials to de-
velop in the stident a critical attitude toward the use of statistical
method in\education and psychology. Special stress has been
placed uﬁon the Emitations of each technique, upon the frequent
and unavoida.ble failure to satisfy in practice all the basic assump-
tions or requirements of each technique; upon the manner in
which the conclusions based upon obtained results must be quali-
fied because of such failures, and upon prevalent misconceptions.
and fallacies in statistical reasoning. In a misguided effort to
simplify statistics, many of these necessary qualifications have
oiten Heen ignored in instruction, and the stident has been pro--
vided with a number of rule-of-thumb procedures. and stereo-
typed. interpretations which, because of the numerous exceptions.
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to them, in the long run get him into as many difficulties as they
help him to avoid. Statistical methods are an aid to, not a sub-
stitute for, common sense. FEach technique is designed for a cer-
Ry S - il
tain purpose and. for use under certain conditions only. When
" these conditions are not satisfied, the application of the technique
may and often does lead to conclusions that are obviously cor>\
" ‘tradictory to common sense. It is because of just such abuses of
“statistical technigues that people have developed a distfust of
statistics and statisticians., In using these-instructiongl‘gﬁteria.ls,
then, the student is strongly advised to strive consavusly to de-
velop in himself a highly critical attitude andgt'tj).”be. on guard
against the easy tendency to over-generalize e depend unduly
upon stereotyped interpretations. N
This course will cover only those tecl;nifqiles that are generally
considered essensial in nearly all types ofStatistical work in educa-
tion and psychology. Many technigues ordinarily included in a
first course in statistics, such. a8 the harmonic and geometric
means, the coeflicient of ({fg.gi,ﬂ'bﬂig}ry,bb@mrrelation ratio, partial
and multiple correlation, adhother special but rarely used statisti-
cal tools, will be given Ji0\Consideration whatsoever in thig course.

< In'addition to the restrictions just noted, ag has been previously
mentioned, this course will devote the minimym of time to mathe-
matical theory and io Computational procedures, These, in-
cidentally, are the aspects of instruction which primarily account
for the reputation of being difficult that courses in statistics have:
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should constitute one of the easiess and most effective procedures
by which he may derive from his studies something of real func-
tional value and may acquire a sound statistical judgment.

How to Use These Materials in Study
The content of this course, then, has been presented in a form
which is specially designed to éncourage the student to think things,
out for himself and thus-arrive at a reasoned understand@ng-of
statistical techniques. Consequently, as has already héen‘ex-
plained, none of the chapters in this text is intended to be complete
in itself. The full significance of some of the statements made in
these chapters may not be wholly appreciated. i).y the student
until he has also considered the problems agd\the questions for
discussion in the study manual. To usgythése materials most
effectively, the student is advised to emplby a procedure somewhat
as follows with reference to each unit¢
b 1. Read carefully the completet cha.pter in th:s text once or
twice before considering any 0£¥E’é pro’i: LR o'y {i€fions in the
study manual. N
2. Begin writing out your own answers to the questions in the
manual in the orde ig‘.w?hich they are presented, referring to the
chapter in this téxt wherever necessary. If a question at first
seems beyond ygiif comprehension, leave it temporarily and go on
to the others,\.”Some of the later questions may give you a hint
to how to t\answer the earlier question.
3. D@ wot ask for help irom your instructor or fellow students on
B.ny\qlrestlon until you have first done your best to answer all
(Ohthe questions mrrespondmg to the chapter on which you are
working. Your final objective, of course, is to arrive at a thorough
and reasoned understanding of the techniques considered. Letting
the other fellow do your thinking will only interfere with your
realization of this objective, even though it may seem the easiest
immediate solution.
4. 4 ftér you have done your best to answer the questions your-
self, take every opportunity to discuss them with other students
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and to compare answers. You will; of course, wish finally to make
certain that your answers are correct. If your instructor follows
the recommended Pprocedure, he will in due time check your work
or you or will consider all of the questions in his lectures or class
discussions and will indicate_ the correct responses to you.

5- When all of your answers have been checked, read-he
chapter in this text again very carefully and attempt ip\this
final reading to integrate your reasoning and conclusions q.b;')ﬁ"t' the

- “techniques considered. ¥ A
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CHAPTER II
“THE FREQUENCY DISTRIBUTION

ANYONE who has worked with test scores collected from a large
group of individuals knows that it is extremely difficult to derives,
any adequate idea of the performance of the group as a Whole
from the individual measures in the unordered form in Wiu(j:l they
were originally collected. Consider, for example, thefollowing
scores (Table 1) obtained from a group of 100 hlgh~school pupils,
each score representing the number of words spell'&d correctly in
a.200-word spelling test.

‘TABLE ¥ ’\\
Scores oF 100 Hica-ScHooOL PUPILS ON & éééWORD SpELLING TEST

Fxgz 126 87 04 107 wwrgﬂbl auhbral mrg 11133 129

©oIyL 93 ir2 123 106 ~'j~ 85 108 S0 03 - 63
128 179. 105 127 . 8B, . NN112 170 87 154 120
56 82 131 120 1:4!. \ 8g g2 109 138 121
164 156 111 8 . 146 146 03 | 121 75 115
137 146 56 104 ,{ W02 - 100 71 1o 134 150
159 102 65 790\, 126 153 Ira 150 132 .65
130 120 147 , H8& ) 102  IOI o6 148 168 152
153 138 03 \{‘;8 92 g8 108 112 67 68

. 145 &6 TIZ N\ 3 103 r 76 157 ob 134 106

N \ .
" To hold SO inany scores in mmd at once is obviously impossible;
to denve\@y generahzed concepts of group performance from a
brief mspectlon of these scores is extremely difficult, Certain
charactenstlcs of the group can; of course, be noted at once. It
k‘\not difficult to see that no pupil made a perfect score, that most
pupils spelled more than 1oc words correctly, that every pupil
spelled some words correctly, that-a “good many” of the pupils
scored between 110 and 1350, -etc., but such statements hardly
constitute a meaningful, accurate, or useful description of the
group as a whole, nor do they provide an adequate basis for the
evaluation of the relative performance of any individual within
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the group. To add very much to the precision and meaningful-
ness of this description would require a most painstaking ““hunt
and count” process. Through such a process it is possible, for
example, to find the lowest and the highest scores in Table z, or
to determine exactly how many pupils scored above 100 or any
other given value, or to determine the exact number of scores
between 110 and 150 or between any other pair of values, &
The student has only %o try to do these things for himself, however,
to discover how time-consuming is the process, how inagtrate it
is likely to be, and how inadequate it is, after all, forthé purpose
of providing him with a composite mental pictufe)of the group
performance. )

* What is needed, then, is some way of classifying or arranging the
scores so as (6 make more convenient the'\tagk of interpreting them
as a group. One-'obvious possibility'would be to rearrange the
scores in order of their size, from the highest to the lowest. With
sach a rearrangement it would\be very much easier to note the
highest and lowest. sgores, %to count the number of scores be-
tween any two given yalues, or to evaluate roughly any given
score by noting how fax'down in the list it occurs, etc. Rearrange-
ment of the scores ju this manner, however, would also require a
considerable amount of time, and would still not enable one to
note quickly 8xd easily the performance of the pupils as a group.

A betff‘?*'?rocedﬂxe would be to list, in order of their size, all
possible.score values within the range of all the scores obtained,
apd then to indicate after each score value the number of times it

o 'ijdtfurred, as has been done in Table 2.

\ W

It is immediately evident that this form of arrangement markedly
facilitates interpretation. The more frequently occurring scores
now stand out clearly, the points of concentration are quite
readily noted, the total mumnber of scores may be quickly secured
by simply adding the numbers in the frequency colummn, the num-

“ber of scores hetween any given values can likewise be readily

obtained through simple addition, etc.

Most important is the
fact that this form of table b e

shows in a graphic way how the scores
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TABLE 2

SIM:PLE FREQUENCY DISTRIBUTION OF THE SPELLING SCORES IN TABIE 1
{Intervals of one unit)

A I 3 f N I S I S f
91 I 4 1 137 I o I 83 1
190 163 1 130 00 I 82 1
.18g 162 135 ’ 108 2 81
188 161 134 2 0y I 80 1,
187 : 160 . 133 I 0 2 79 2>
186 59 2 132 2 105 3 78 .
185 158 31 I o4 I 778N
184 57 I Iz0 03 I 16 ol .
183 56 1 1Z9 I 102 3 U5 1
182 155 28 1 01 I " 74
181 154 1 129 1 0 1 LN 73
180 F53 2 126 3 [ l1] +52) 72
79 1 152 1 rzg 08 A\ " 11
78 151 24 o7\ 70
177 150 I 123 I QON 2 60
76 140 122 Lgs5) 68 2 :
175 48 1 I2E 2 .’.\94 I 67 1.
74 1 47 1 120 2 N\ 83 3 66
173 : 6 3 119 N\, 92 2 65 2
172 45 I 18 1 W 1. 64
171 I 44 17 go 63 1
ije 1 143 IWW «clbrauhbl §9y oi'g in 62
169 142 1Z508 61
168 41 I ~I.I4’ 87 2 6o
167 150 “ar3 36 1 59
166 139 1 LI\ 112 3% 8s 1 58
163 138 2 L8 1z o1 84 57

) +€ ) 56 2

LD

are distributed alqng'a linear scale of values. Thislatter advantage
would be morgevident were the scores arranged in a single vertical
column (which is the usual practice) instead of in five separate
columng a8 the limitations of space here necessitated.

Ta@ilé 2 has the serious disadvantage of bulkiness. With the
gcores distributed over so wide a range, too much space is necessary
to'list all possible values. This fact suggests that the interpre-
tation of the data would be further facilitated if Table 2 were
condensed by indicating the number of scores falling within equal
inlervals along the linear scale, instead of indicating the number of
times each integral value occurred. This has been done in Table
3. In this table, illustrating what is known as a grouped frequency
distribution, each interval is identified in the “S” column (S rep-
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total number of scores contained in the corresponding interval.

.~ any other sme of interval could, of course, have been employed

T4 " THE FREQUENCY DISTRIBUTION

resents scores or measures) by the highest and lowest integral
scores fu the interval, and each “frequency” value indicates the 3

In this case, each interval includes three units along the scale 1

TABLE 3
Gnoupzn qumcy DISTRIBUTION OF THE SPE - SCORES 1 TABLE}
{Intervals of three units) Ral
S H f . S f | '\
191_193- ' . : . 1223124 /%
183-1g90 IIG-1209 N4
185137 116-180 1
st ’ g™ 1
179181 X s
e \ 107109 4
oirs : N 1o4-106 6
Ijo-173 - 2 '\ lor-103 §
0T . ‘S gB-100 2
AR AN 95— 97 2
161163 . x O 5591 2
. 158"160- g ‘,')’.. 9 ;
g2 N 86~ 88 4
Hei B3~ 83 2
br i H ’db; au}fb’vary orgin By~ 85z
1o 77~ 79 X
dords ¥ \ ' V470 2
el & _- . g1~ 73 X
I37-E39 ] s
e \\,, . 65- 67 3
Sk 62- 64 1
- 123‘130 4 : 5o 61
Atz 4 0 S 56— 58 2
\~ —

Ok@cmsly, the degree of oompactness in a table of this ]ﬂnd
Wﬂl ﬁepend upon-the size of the mterva,l into which we decide to

: .ola.ssify the scores. We.can secure successive degrees of compact-
\ “ness, for example by using an interval of 5 units, as in. Table 4;

or of 10 units, as.in Table 5; or of 20 units, as in Table 6; or of
50 units, as in Table 7.

It should be noted that Tables 37 dlﬁer in one fundamental
respect from Table 2. . In Table 2 each original score is retained
intact, that is, the exact value of each score is indicated. In the
later tables, however, we lose in varying degrees the identity of
the - ongma.l scores. - For example. 'we may read in Table 4 that
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‘TABLE 4 TABLE 5 - TABLE 6
Grourep FreQueNcY | GroureD FrEQUENCY | GroUPED FREQUENCY
" DISTRIBUTION GF THE | IMSTRIBUTION OFTHE | DISTRIBUTION OF THE
SPELLING SCORES SPELLING SCORES SPELLING ScORES
¥ TABLE I iN TABLE 1 IN TABLE. 1
{Intervals of five units) {Intervals of ten ugits) | (Intervals of twenty units)
s f s f s f.

38192 T 9019 I - 18o-199 1 A
183-187 ) . 180-189 160179 6 2\
8182 1 I7o-ITg 4 140159 16 NN f
73-177 I 16o-10g 2 . 120139 21 ™
168172 =2 5150 9 I00—I1G .:5‘
163-167 2 I40-149 7 80— 09y \10
158162 2 130-13¢ IO Go—z19 )10
153-I5% § 120129 I 40°\59 2
148152 3 o1y o 2
143-147 5 100-I09 IO \
138-142 ¢ 9O~ 63 O x.\\.
133-137 4  Bo-8& 10 { &
128~132 3 70--79 4
123-127  § 6o— 6 O . A :
1t8-122 3 50~ 50 2 ROy TABIE 7
i o DN GROUPED, FREQUENCY -
108-112 IO 3 R
103-107 8 \aiww \dbr aulllbIBL SR oF THE
_98:“’2 g o N - BPELLING SCORES
g%_h gz p o N TaBLE 1
83-87 &3 ¢ *} {Intervals of fifty units)

78- £ 3 ¢.& W - -

1377 2 D s f

68— 72 3 \

63- 67 4 _ /O ISo-Igy 10

R8— 62 AN ,  I00-I49° 53

53= 5T 290 5o~ 9¢ 3t

..\; . R

there were! E} scores in the interval 93—97, but we have no way of
te]]mg how these 6 scores were distributed within the interval
its€f\“We are therefore unable to determine from Table 4 the

frequency of occurrence of any smgle score value.

However, we

can now more conveniently derive an adequate idea of how the

Scores were disiributed, in general, over the entire range.

-The

coarser the interval, the more senous this loss of identity of in-

dividual soores becomes.

In: Tablé 7 it causes most of the scores

tofallina smgle mterval and thus hades most of the cha.ractenstlcs
of the ongmal dlstnbutlon. . o
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" The size of the interval to be used is thus a matter of arbitrary
choice — dependent upon the nature of the data, upoen the uses
to which the grouped frequency distribution is to be put,or upon the
kind of interpretations that one desires to draw from it. If high
precision in description is desired, if fluctuations in frequency ovel
small parts of the range are to be studied, and if the number of
scores tabulated is large enough to permit such detailed study, then
the interval used should be small, as is ilustrated in Tables,2,"3,
and 4. If, however, only a very rough picture of the dmtnbutlon
of scores is needed, a very broad, interval, as in. Ta.ble 6 of even in
Table 7, may prove quite satisfactory.

It is: therefore dangerous to Set up any general ru]e concerning
the number of intervals into which a senes al\measures should be

classified. Eszperience has shown, howevex ‘that for most types
of data there is usually no ‘real need formore than 20 intervals,
and that the use of less than 12 mterva.is usually obliterates too
many important chara.eter15t1cs~o{ ‘the distribution.

. The purpose of the. ga%mgpgsmn has been to point out

T‘Ell]

“as simply as possi‘ﬁ’l"e t ¢ MBjor purposes, advanta.ges and limita-

tions of the frequency, dgstnbuuon as a means of presenting group

data. It now beertges necessary to consider more specifically the
detailed questions that arise in the construction of frequency dis-
tributions of data of various types.

Frequem})ﬂmbzmom of Integral Tesi Scores

 Different types of data require different methods of handling
+&factors important in one situation are not important in others.
Tt is’therefore impossible to provide any single set of rules that
the student can apply in any and all situations and to all types of
data. The data for which the majority of students in this course
will have to construct frequency distributions, however, will most
often consist of integral scores on educational and psychological
tests. The construction of frequency distributions for such data
is a relatively simple matter, and will therefore be considered first.
The procedure required for other types of data can then be more
easily explained as variations of this simpler procedure.
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STEPS IN THE CONSTRUCTION. OF A GROUPED FREQUENCY

2.

~ DISTRIBUTION OF INTEGRAL TEST SCORES

. Arrange a date sheet with the three headings Score, Tabula-

tion, and Frequency. The abbreviated notations S, Tdb.,
and f, respectively, may be used if desired. (See illustra-
tion in Table 8.). : ~
Determine the range of the scores: Find the highest score and
the lowest score in the series. Find the difference betiween
these scores. This difference is called the rangesof the
SCOTES.

. Divide the ra,n@ by 13, (Ca.rry the result to 0111y one deci- -

mal place.}

. Select from the foﬂowmg preferred llst(he numhber nearest

the quotient obtained in Step 3. The atmber thus selected
will represent the size. of the interwalto be used.

Preferred mtewa!s I, 2, 3, 53 7, 10, 15,~—or any higher
multiple of 5. www dbraulibrary.org.in

. Write the integral Hmits\of each interval, in descending

order, in the first (S).column of the table. Begin at the top
with the interval which contains the highest score and con-
tinue until the interval containing the lowest score is reached.
The “integral {inits” of an interval are the highest and lowest
scores in the‘ihterval. Determine these limits as follows:
a) When\\the number of units in the interval (as selected in
SQgp 4) is an odd number, find the msdtiple of this number
. ':whlch is nearest to the highest score in the series. Select
*y “the integral limits of the upper interval so that this
multiple is the middle score in the interval. The limits
of the other intervals will, of course, be automatically
determined when those of the top interval are fixed.
b) When the number of units in the interval is an even
number, let the lower integral limit of each interval be a

| multiple of this number..

- Tabulation: Begin with the first score in the ongmal un-
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ordered list of scores. Determine in which interval this score
is induded. Place a tally mark, in the Tabulation column,
opposite the appropriate interval. . Proceed in the same way

~ for the remaining scores in the original hist. The subsequent

counting is facilitated if every fifth mark in a row is made
_slanting across the precedmg four marks.
.'Count the number of tally marks opposite each interval@nd

wiite the result in the frequency column. Add the nfmbers

_ in the frequency column as a partial check on the~accuracy

of tabulation. The result should agree with thf: tota.l nurber
of scores in the ongma.l list.

¢ £
L W
g\

TLLUSTRATIVE PROBLEM

" .

These steps may be made cleares’ by\ considering their applica-

tion to the data in Table 1.

These scores have been properly

arranged in a frequency dlstnbutmn in Table 8 following, The

steps in the construction (ﬂUmbe d o correspond to those used
likbrary.or

in the precedﬁig“géi‘}é'iaﬁ scnptmn) were as follows:

I.

2.

A data sheet wa‘.s\ﬁrst prepared.  The form of this data sheet
is shown. 111@131(&: B..
The highest score in 'I‘able 1is 191,

. The lowest is §6. The
. range,j&’therefore 135. \

3, 138 divided by 15 is g.0.
4\’1‘119. number in the list of preferred mterva]s nearest- to 9

. ", \lS TG

5'.

- The scores were therefore grouped into intervals of
10 units each,

Ta accord with Step 5 b in the preceding rules, the lower

integral limit of the interval containing the highest score

(191} is 1g0. ‘The upper limit of this interval is then 199
The values 190—199 were therefore written at the top of the

~Score column, and the rest of the interval Kmits. were de-
. termined by bulldmg down from this interval.
. The first score in the original lst i i3 x32.

“The first tally

. mark was ‘Lhereiore placed in the T abxdatwn coluran opposite
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the interval 130-139. The.second score is 171. The second
tally mark was theréfore placed opposite 1yo-179. The pro-
cedure was the same for the remaining scores.

4. The tally marks in each row were counted and these numbers
placed in the corresponding positions in the frequency column.
The sum of these frequencies was found to be 100, the same
as the number of scores in Table 1. .

N
TABLE 8 . ¢ \‘. A
FR.EQUENCY DISTRIEUTION OF SCORES IN TABLE 1: SCORES GF 100 H.ic:H-

Scroor Purmis oN A 200-WoED SPELLING TEST {’f",

s Tub, R i

L]

100-100 /
130~18¢ :
170-170
160169
150-I50
L40-140
I130-130
120-129
I16-119
100—109
90— 0Q
8c— B9
- 79
bo— 69
5o— 59

A
/ 3
.wﬂ(&br}ruhbl ary.org.in

(=] -y
VD DY W

B G gc

Commenis on .Pmchure Stiggested for Test Scores

As has already been noted, different situations may. calk. for
different proceédures, even for fhe same type of data. The steps
suggestgdi}n pages 17 and 18 only describe the procedure that may
usualp-be followed. There are many situations, however, in
wi "?:ix“éxceptions must be made to these rules. It is therefore
essential that the reason for each step be clearly understood, in
order that the student may recognize the situations in whlch varia-
tions are desirable.

Step 3: Dividing the range by 15 obviously results in a number
which is contained in the whole range 135 times. The procedure
suggested in Steps 3 and 4, then, will result in about 15 intervals
for the whole distribution. ~Experience has shown that approxi-
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mately this number of intervals is adequate for most purposes.
If for any reason it is desired to group the scores into finer or
coarser intervals, the number of intervals desired should be sub-
stituted for 15 in this step.
. Step 4: The suggestion in Step 4 is made for reasons of conven-
jence only, and has no bearing on the accuracy of any results ob-
tained from the frequency distribution. We could, of course,
dispense with this step and use as the size of the interyal the
“rounded” integral value of the quotient obtained inlStep 3.
For example, in the illustrative problem, we could ha,\?e used an
interval of g. There are certain objections, howe\rer to this pro-
cedure, One is that people in general are niultlple—of~ﬁve or
multlple—of~ten “minded.” It is easier for>them to think in
terms of multiples of § or 10 than in te;ﬁ@df pumbers such as 6,
. 9, 13, 16, 19, etc., which are represeutét;tve of the numbers that
we would frequently get as the sizé.of the interval if we used the
rounded quotient of Step 3 dirdetly. In general, the use of an
interval containing an pdg, m:nﬁ‘units results in a more con-
venient midpoint for each interval. Because of the loss of identity
of the original scores, if will be necessary in later computations to
use the midpoint of each interval to represent the value of all the
scores containedl, in'the interval. If the interval contains an even
number of ugits; the midpoint will be a decimal value and there-
fore i mcon\ement touse. In any interval containing an odd num-
ber of tinits, however, the midpoint will be an integral number.
Qne more advantage of the hmltatmn in choice suggested in
:.Step 4 is that it results in uniformity in’the solutions of problem
"\ vwork handed in by the class. This is administratively quite im-
portant from the point of view of the instructor or the reader who
has to correct these problems. This step should therefore be
rigidly observed by the student in all problems in this course that
:;fs ’i;;fe:ded by any of the qualifications made elsewhere in
o S“?,;‘i After the size of the interval has been selected, where to
start” each interval must still be decided. For example, if an
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interval of three units is to be used, and if the highest score in the
series is 113, we could write the limits of the top interval as 111-
113, Or 112-114, Of 113-I15. A definite basis for settling this
type of question has been provided in Step 5. The provision in
@ under Step 35 results in a midpoint that is easy to *read,”
especially where the interval is one of 5 units or an odd multiple
of § units. As suggested in & under Step 3, it is self-evident
that a grouping of 10-19, 2029, 30-30, etc., is more -nat\urai and
convenient than, say, 13-22, 23-32, 33—42, etc. For everiintervals,
other than intervals of 10, Step 5 is important ,c{hiy to secure
uniformity in the solutions of problems a.ssignediﬁ this course.

A specific illustration of Step 5 @ might b{ belpful.  Consider
a series of scores in which the highest score’is 151 and the Iowest
is 54. The range is then ¢7, which\divided by 15 yields 6.;.
We therefore select the interval of 7 frem the preferred list. The
multiple of 7 nearest x51 is 1 54,3}?]53(:]1 will be the midpoint of the
top interval. The limits of th¢ V;ﬁtgr(}zﬁalraxiﬂaﬁ_ {then be determined
by counting out three in either direction from Ts4- and are 151
and 157 respectively. Begmmng with the interval rgi-157, we
then build down ina{{{er score column to obtain the limits of the
remaining intervad®, It will be noted that eack interval will have
as a midpointsa‘giultiple of 7. -

An excep;tib}n‘ 1o Steps 4 and 5: “Natural” Grouping: Sometimes
the mea‘ﬂ\ifé:s. in a series will lend themselves more naturally to
another }grouphag than that determined by the “rule-of-thumb”
§11ggés£ions in Steps 4 and 5. For various reasons, the measures

may tend to concentrate at or about points on the scale which are
equal distances apart. For example, salaries of high school
teachers are usually multiples of $50 or $100. Salaries such as
$913.00, $879.00, $1192.00 Will be found much less frequently than
salaries of $goo, $950, $1050, etc. In such instances, the interval
“imposed” on these data should be equal to or a multiple of this
uniform distance between successive points of concentration, and
the midpoint of each interval should coincide with one of these .
points (or should be such that within each interval these points
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are placed as symmetncally as possible with reference to the mid-
point)., If the intervals are not so chosen, the measures within
each mtarvé,l‘mll show an tnbalanced distribution, and a system-

atic error wﬂl‘be introduced into any computation in which the
midpoint. bf sach interval is used to represent the average value
of the measures in the mterval ~
Variations in Pmsedwe far Other Than Test Score Data )

"The problem of constructing frequency distributiong_bf test

scores is simplified by the fact that such scores are almost invaria-
o hly expressed only in integral values; that isg fra.cnonal test
scores are of very rare occurrence, There afe\many situnations,
however, in which continuous variables are méasured to the near-
est given fraction of a whole unit. Heights of individuals, for
example, may be measured to the nearest eighth or tenth of an
inch. It may also happen, in such ¢ases, that the range of measures
18 50 narrow that in oxder to get sufficient discrimination between
the measures in the freguedd digteititifon an interval of a fraction
of a,.whole unit must be u§ed. TFor example, beights of individuals
might be cla.smﬁed mt} intervals of one-half or one-quarter
inch. ~ \\

In cases whers Jhe measures to be tabulated have been deter-

mined to the'dearest multiple of a given fraction of a unit {for

example, fa)the nearest multiple of a sixtéenth of an inch, tenth
of a: pé\tmd or fifth of a second) the following rules may usually
beapphed. o

‘1 ‘Divide the range by the number of intervals desired (usually

| '15).  Choose as the size of the interval that comvenient

- -moultiple of the given fraction which is nearest this quotient.
. I.,et- the interval “limits” (corresponding to the integral
.]m'cut:ﬁ, in distributions of test scores) be multiples of the given
fl:qctlon-. If the interval is an odd multiple of the given frac-
tion, let the midpoint of each interval be a multiple of the -
Size of the interval. i the interval is an even multiple of
. the given- fractlon, let the lower “limit” be a multiple of the

il st Enie o ef T

e e e bt
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size of the interval. (As will be noted later, these “limits”
are not the real limits of the intervals.)

3. Proceed as in Steps 6 and 7 on pages 17 and 18.

The following illustration may help to make these rules clear.
Suppose a measure of height of each of a number of individuals has
been determined to the nearest tenth of an inch. Suppose the
tallest individual is 72.8 inches and the shortest 64.3 inches in
height. The range of the distribution would then be 8.5 inches.
One fifteenth of this range would be .566 inches. Since it wotild
be futile to express the size of the interval in units firler than
those used to express the measures themselves, welround this
result to the nearest tenth of an inch, or to .6 inch.¢ This value
could be used as the size of interval, but in this\case a half-inch
interval would be more convenient to use and*would result in a
rumber of intervals sufficiently close to that-desired {15).

In accord with the second rule, the*midpoint of each interval
would be a multiple of .5.  The midpoints would therefore run
as follows: 64.5, 65.0, 65.5, 66.0, 4" SPERHY Y ¥ 265 Which would
be the midpoint of the intervak eontaining the highest measure.

In accord with the third rule, we would express the “limits”
of the intervals in the .§ ¢olumn in tenths of an inch, as follows:
64.3-64.7, 64.8—65.@,\6}3—65.7, and so on up to 72.8-73.2, the
limits of the top intérval. (As will be explained later, these are
not the real lxmat\s of the intervals.}

It is very iiﬁporta.nt to note that these rules for “other than test
seore ™’ Q&‘a“a,ga.in only constitute a rule-of-thumb procedure that
is usyolly satisfactory, and to remember that there are many
sitations where exceptions may and should be made to these
riiés® The exceptions may be of the same nature as those described

1 The moral, “Beware of rule-of -thumb procedures,” should be contirually preached
throughout a first course in statistics. Such rules of convenience are very valuable
devices for simplifying and facilitating routine statistical ‘work when applied by
persons who understand their [imitations, but they are also extremely dangerous
in the hands of beginners in that they tend to foster an uncritical attitude. Through-
out this course the student should strive consciously to develop the habit of examin-
ing critically each new technique, of remaining keenly aware of the assumptions
that are made in its development and that are necessary in its application, and of
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in the case of integral test scores. I a very large number of
measures are to be distributed, and if changes in frequency within
a small part of the whole range are to be studied, then more than
15 intervals may be desirable. Similarly, there may be situations
where a small number of intervals will yield all the information
that is desited. Again, if the measures tend to group about equai}(
spaced points into “natural” intervals, the student should qet
hesitate to depart from the rule-of-thumb to let the imipesed
interval conform to this natural interval. D

L &

Real Limits and the Meaning of Integral Measures; 0

- For the sake of simplicity in presentation,"ébi'tain important
considerations have been omitted from orenly very briefly men-
tioned in the preceding discussions. Tﬁes\e have to do with the
real limits of intervals, with the distibction between real and inte-
gral limits, with interval midpoints(sometimes called class-values),
and with the meaning of an integral score or measure.

The numeric@‘g@%@@ﬂﬁﬁ@-mm&sﬁml work in education
and psychology may be{dlassified as either condinuous or discrele.
Discrete data are glw@)é expressed in whole numbers or integers,
and ordinarily {eﬁ&sent counts of indivisible entities or units:
The linear scales’employed with discrete data are always char-
acterized by gaps at which no real measures may ever be found.
School :eQro\lhnents, sizes of families, and census enumerations are
emrgﬁles of discrete data. Continuous measures are those which

ma.y conceivably be found at any point along a continuous linear
\ stale. Weights of school children, for example, may be measured

in a.s'ﬁne u1_15ts as we please, and (between certain limits)
there ismo point along the scale of weights at which we may not
conceivably find the weight of some pupil, no matter how finely

noting the characteristics of sitvations in which i

i ; : exceptions must be made to any
mt?;tr:lry anm]f of convenience. It is the failure of statisticians to develop this
: hict'iiil E the consequent careless application of techniques to situations for
which ¢ g :Urg not Intended, that lead so often to conclusions which gre obviously

d contrary to comemon sense, and that
of people in general in “statistics.” bece have weakened the copfidence

[ I TP i B Sty [P
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we subdivide the scale. Any trait or characteristic in which
individuals may differ by amounts which would approach zero if
sufficiently refined measuring instruments were employed may be
congidered as a continuous variable. Intelligence, school achieve-
ment, arithmetic ability, height, and strength are examples of
continuous variables. )

While continuous variables may theoretically be measured in ‘a8
fine units as we please, the measuring instruments which welem-
ploy in actual practice are usually relatively crude, and the meas-
ures obtained are only epproximations to absolutely accurate de-
terminations. We seldom measure weights of pgré;ons, for ex-
ample, in smaller units than pounds, or ages)n) smaller units
than months or years. ' O

Ordinarily, measures of continuous v ialles are taken to the
nearest multiple of some convenient unif,) Weights, for example,
are usually read to the nearest pound, “If, when one weighs him-
self, he finds that the pointer on Lh:,\?‘}fﬁa}lﬁ lijilglo?@gr%qi 146 tha{l to
145, he reads his weight as 146, pounés. &n 4 person gives
his weight as 181 pounds, we, interpret this to mean that his real
weight is nearer 181 than either 180 or 182 — that is, that it is
somewhere between 180:5 and 181.5. Similarly, height is usually
read to the nearest inth, or sometimes to the nearest half or quarter
of an inch, and pérformance in the hundred-yard dash is timed to
the nearest ténth or fifth of a second.

In a frequency distribution of weights, then, an interval identi-
fied by.the integral limits 163-167 must be considered as really
extgxlzgiiﬁg from 162.5 up to 167.5 pounds, since 163 represents any
real'weight of from 162.5 to 163.5 and 167 any weight from 166.5
" to 167.5. =

Since most measurements expressed as integers may be considered
as having been taken to the nearest integral values, the rea! limits
of an interval in a frequency distribution should usually be con-
sidered as extending .5 of a unit on ecither side of the integral
limits. The so-called integral limits are then not Lmifs at all,
but only the highest and lowest whole numbers within the interval.
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Cl

This observation, as the student will later discover, is of consider- 1

able significance in the computation of certain statistical measures 5

3
derived from frequency distributions. ;

i
- Scores on all kinds of educational and psychological tests should, i
in the opinion of the writer, be interpreted in the manner Just 3;
suggested. Some writers on statistical procedures, including i
sriters of elementary statistical textbooks, have maintained that
for certain types of tests an integral test score should be considered
as representing an interval which extends from the givenJdategral |
value up to the next integer above. They would contend, for °
example, that a score of 7 on an arithmetic problems fest should
be interpreted as representing a unit interval ofipco—7.99, on the
grounds that a pupil may have begun workon but not have had
time to complete an eighth problem. As Al be pointed out later,
however, scores on educational or pgycl}oiogical tests never bave
any absolute significance, but only indicate the relative status of
an individual in a group. . The-addition (or subtraction) of any
constant amount \E)dboguﬁww gneasures alike clearly cannot
influence the réldtive status'of any measure. This being the case,
no advantage can pqsgibly be gained by making, in the case of
test scores, any c¢ption to the general rule given in the preceding
- paragraph; while to make such an exception will only unnecessarily
complicatetlié procedures and confuse the student. Furthermore,
to considepah integral test score as the lower limit of a unit interval
is it'xQ@sistent with the known fact that errors of measurement
d;_"‘? to'test unreliability are equally likely to occur ini either direc-
: .\?1611.- For these reasons, it is suggested that integral scores on all
(" veducational and psychological tests and scales be considered as
Tdepaims of unit intervals, and that the real limits of any interval
in a grouped frequency distribution of such scores be considered
as ex’c.ending .5 of a uniit on either side of the integral limits. .
1t is important to note that there are certain types of data
g;}:ei &tgt lzmt;?) v:eh:eci require a diﬁergnt treatment fr?m
e e o et T sl
_ Ay rample, it 1s the usual practice to
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express an individual’s age in years on his Jast birthday.. Ordin-
arily, we think of a “13-year-old boy” as one who is anywhere
between 13 and 14 years of age. A hoy whose age is 13 years
~ 7 months would usually be tabulated as a r3-year-old. . Similarly,
“five years of teaching experience’”” would, as such data are often
collected, mean more than five but less than six years of experience,
For data collected in this manner, we must, in order to avoid,
important systematic errors, consider an integral measure as the
lower limit of a unit interval. The real limits of any interval e
grouped frequency distribution of such data would ha.}ra:};o be
considered as extending from its lower integral limit{tp, to the
lower integral limit of the next interval above. THé'real limits
of the interval 16-18 would in this case be 16:6b¥18.999. It
should be noted, however, that age data may\be and often are
otherwise collected. Many questionnaireg, §6r instance, include
the item “Give your age in years to yplx hearest birthday.” ‘Tn
this case, of course, no exception should be made to the usual
interpretation of integral measupggasngmsal-limigsn How an
interval in a grouped frequencydistribution should be interpreted,
then, depends upon the mapmer in which the data were collected,
or in which the measurements were made.

The midpoint of any\fnt'érva.l is always midway between the req!
limits, however the§e)real limits may be placed with reference to
the integral limite’ The midpoint of the interval 16-17 would, in
the case of a/distribution of integral test scorcs, be halfway be-
tween 15,9and 17.5, or 16.5. The interval 16-17 in a distriby-
tion of ages “to last birthday” would have a midpoint of 147.00,
haliway’ between 16.00 and 17.999. The midpoint is significant
because it is so frequently used in statistical computations to Tep-
resent the average value of the measures within the interval
(the identity of the original measures having been lost).

It might appear, because of the discontinuous character of
discrele data, that the preceding suggestions concerning the de-
termination of real limits and midpoints may not be applied when
the data are discrete. Some textbook writers, in fact, have given
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spectal consideration to the construction and interpretation of
frequency distributions of discrete data, and have described
slightly modified procedures for their treatment. In the writer’s
opinion, this has only served to confuse the student with quali-
fications which are of no practical consequence so far as the major-
ity of students are concerned. In this course, therefore, no dis-
tinctions in the statistica] treatment of continuous and discrete_
data will be made, either with reference to the frequenc;a dis-
tribution or to techniques later considered.

\\ v
£ 3
N/



CHAPTER IiI
PERCENTILES

The Nature of the Measuring Scales on Educotional and Psychologi-
cal Tests ~

THE linear scales along which the scores on educational and
psychological tests are expressed differ in several fundangénfal
respects from those employed in physical measurements In
physical measurement each scale is based upon a constant unil,
and measurements are made from a reference poinf, which either
represents an absolute zero or has a known relation'to the absolute
zero. The units employed in physical meastrement are also
usually capable of description in more funfamental terms, which
permit us to transform measures from ené‘éystem of measurement
into another — for example, to traggforfn inches into centimeters,
ounces into grams, or degrees Ce‘fi’ﬁ‘g"fd BT aeyi %R Pahrenheit.
Scores on educational or psychiological tests have none of these
characteristics. A test sgore usually represents the number of
test items to which the(person tested has made the correct re-
sponse. For example,\f a pupil makes a score of 8o on a 150-
word spelling teststhis score indicates that he has spelled 8o of the
words correctlyt, > The meaningfulness of this score depends, of
course, upomthe range and distribution of difficulty of the words
constituﬁ% ‘the test. If the test contains 1co very easy words,
this sedre does not necessarily mean that the individual making
itvis'a'very good speller. On the other hand, if the test consists
exclusively of very difficult words, a score of 8¢ may represent a
remarkable performance. . :

The meaning of a difference between two scores on the same test
likewise depends upon the range and distribution of difficulty of
the items. Suppose, for example, that-one r50-word spelling test
consists of words which are evenly distributed over a very wide
range of difficulty and that a second 150-word test consists of
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words all of which are very nearly of the same difficulty as thc
average word in the first list. A pupil scoring 120 on the first
test is, then, probably a very much better speller than one scoring
20, since the hardest words spelled by the first pupil would be
very much more difficult than the hardest words spelled by the -
second, On the second test, however, two pupils making the .
scores of 20 and 120 respectively may not differ in ability b}?\
nearly so much, since the words spelled by the first pupil would -
be only slightly easier than the most difficult of those speLled by
the second. For similar reasons, & given difference befyween two
scores on the same test might have a different significance ‘at differ-
ent points along the scale. Suppose that on acertain test pupil
A spelled 3o words, B-spelled 60, and C spelled\gd words correctly.
Suppose, further, that the test contains 7&’very easy words and
7o very difficult words, with only 10 wm%s of intermediate diffi-
culty. 1In this case the difference, in/ability between C and B
would probably be very much grea{ér than that between B and A,
. since A and B might both have beeg @ble to spell only very easy
words while C waw w45 uéi‘)elﬂ some of the very difficult. On the
scale of scores for thls test then, the “unit” employed would be
much larger at so \pomts than at others. Similasly, a score of
zero on a test of*this kind would have no absolute significance.
If a pupil fails@® spell any word in a spelling test —that is, if he
makes a sgote’of zero — obviously it does not follow that he has

70 san ability, since other. easier tests might contain some

words that he can spell,

Jn ‘general, then, the magmtude of the “umt” emplayed on the
scales for any educational or psychological test depends upon the
number of test items and upon the distribution of their difficulty
for the test as a whole. Since the number of items making up the
test is arbitrarily determihed by the test ‘author, and since the
difficulty of the individual items and the form of the distribution
of difficulty for all items cannot be accurately anticipated or
controlled by him but usually is more or less accidentally deter-
mined, the magnitude of the “unit” employed is indeterminate
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and usually fluctuates in value even within the same scale. The
meaning of a given score on any test is unigue to that test; that is,
it is not exactly the same as on any other test. The meaning of
the arbitrary zero point on any scale of test scores is also unigue to
the test and never corresponds to an absolute zero. Furthermore,
scores on such tests cati never be described in more fundamental
terms by means of which direct comparisons of scores may bes
made {rom test to test or readings on one scale transposed intg
those on another. o R\
For these reasons, a single score obtained on most educational
or psychological tests has little if any absolute significafice’s— that
is, it is not capable of meaningful interpretation ‘whénconsidered
alone. Neither can it be meaningfully compared. directly with a
score obtained on another test. Scores on sq%tests usually have
relative meaning only; that is, they are ordiharily useful only to
determine an individual’s relative status i a-given group. The fact
t]:'la.t a given pupil has made a score of ’E‘ﬁ:?an fyfest ',o}éﬂi{‘ed Sta.tes
history, for example, in itself tellsaus notlfung about the quality
or magnitude of his achievemerits In order to interpret this per-.
formance, we must not only“be intimately acquainted with the
test itself but must also kfi&v what scores have been made on the
same test by other pupflgin a group to which the given individual
belongs, and must kisow something about the nature of that group,
that is, whether #t,3 made up of college or high school or elemen-
tary school pupils, what kind or amount of instruction they have
had, What\i§tﬁe level and range of their intr—;]]jgenc_:e, etc.

Ranks, S?:'ercendiles, Deciles, and Quartiles

Betause of the characteristics of fest scores that have just been
considered, it is essential in the analysis of test data that we have
Some means of deriving from the original or raw scores other
measures which are directly indicative of the relative status of
¢ach of these scores in a distribution of such scores. Such meas-
ures of relative status will enable us 1o interpret more adequately a
single test performance and to make comparisons of performances
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on different tests. One of the devices commonly used for this
purpose is that of determining the rank of each score in the series
of scores in which it is found. The rank of the score indicates
its position in a series when all scores have been arranged in order
of magnitude. A rank of 30 for a given score would indicate that
the score is the joth from the top (or from the bottom) when all
scores have been arranged in order of size. The meaningfulness,
of any given rank obviously depends upon the number of scores
in the series. 'To raunk zoth in a group of so, of course, dot:s not
mean the same thing as to rank zoth in a group of 100., For this
reason, ranks are ordinarily expressed in relative texms as per-
centile ranks. The percentile rank of a given score in a distribu-
tion is the per cent of measures in the whole distrbution which are
lower than the given score. Ii, for example,{a.n individual makes
a score higher than that which is made by, 81}1'361' cent of the individ-
ualsin a given group, we would say that b is at the 8gth percentile.
In general, then, the pth percentilelin a distribution of scores or
measures may bewd\gm.&smhagp&gion the scale below which
# per cent of the cases fall. ~Thus the goth percentile is the point
below which go per cent auf above which 10 per cent of the meas-
ures le. The 7s5th, &oth, and 25th percentiles are known as
the quartile points n the distribution, or simply as the quartiles.
The ysth percentﬂe 1s the Upper Quartile, and is usually denoted
by Q,. The csth is the Lower Quartile or Q,, while the soth
is the Middle Quartile or median. The even roth percentiles
are onn” referred to as the deciles. Hence, the zoth percentile
is the ‘second decile, the 3oth the third, etc. According to the
) sde\ﬁmtlon given above, the 1ooth percentile would be a point

above the highest score earned, and the zero percentile below the
lowest, and hence could not correspond to any actual scores. In
practice, however, the highest and lowest scores are frequently
arbitrarily considered as corresponding to the 1ooth and zero
percentiles respectively.

The 'student should distinguish ca.refully between the terms
percentile and perceniile ramk. The percentile romk of a given



COMPUTATION OF PERCENTILE RANES 33

score is the number representing the per cent of the cases in the
total group lying below the given score value, while the percentile
is the score or measure below which a given per cent of the cases
lie. The 28th percentile in a distribution of weights may be 112
pounds, but the percentile rank of an individual of this weight in
this distribution is 28. O
The Computation of Percentile Ranks in Grouped Frequeticy Dis-
tributions ’ ¢

In any given frequency distribution of scores, we/thdy wish (a)
to determine the percentile rank of a given scote, or (b) to deter-
mine the score wiih a given percentile rank, that is, to determine
a given percentile. We shall consider ﬁl’SK’ﬂ?\le ‘procedure involved
in determining the percentile rank of a, gi?en score.

If all of the original scores were arranged in order of magnitude
(and if there were no ties in rank); we could determine the per-
centile ranks by dividing the:petcentile scale (of from o to 100)
into as many equal divisigns,as there are mdividdals fi the group,
and by assigning as the,percentile rank of each individual the
midpoint of the division in which he belongs. - For example, if
there were 40 individuals in the group, we would divide the scale
of from o to 1dg‘to 40 equal divisions. The first division would
extend fromi /o to 2.5; the second, from 2.5 to 5.0; etc. “The in-
diﬁdud@xiked third from the bottom would then belong in the
divi;idli 5.0-7.5, and his percentile rank would be the midpoint of
thig division, or 6.25. Similarly, the individual scoring at the

“hottom of the list would belong in the division 0.0-2.5, and would
have a percentile rank of 1.25. '

If we are to work directly from a grouped frequency distribu-
tion of the scores, the fact that we have lost the identity of the
original scores requires that we follow a somewhat more complicated
procedure. Suppose, for example, that we wish to find the per-
centile rank of the score g5 in the distribution presented in Table
9. To do this we must first determine kow masy scores in the dis-
tribution lie below the score 95, The number of scores lying
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below g5 is equal to the number of scores in all of the indervals
below that which.contains this score, plus the number of scores
within the interval go-gg which are below gs. The number of
scores below the interval go-gg can be readily determined by add-
ing the class frequencies below this interval. In this case, the
sum of these frequencies would be 3+1+2+5+8+8+8
= 35. To determine how many of the scores within the interval
go-gg lie below. 93, we-must make an assumption concerning the
way in which these scores are distributed throughout the interval
The most convepient and reasonable assumption that we can
make is that these scores dre evenly distributed within thejinterval.
The point g5 is 5.5 units above the lower real limit ‘@Bg.5) of this
interval. Since the.interval consists of ‘ro umits, 5.5 units rep-

35

resents 2= of thi_e. chstance from’ the bOt‘e\otﬁ\’to the top of the

interval. Since we: have assumed that,ttﬁe scores are evenly dis-
tributed W”_It.h_in_"ﬁf W‘%ﬁ%b}gl@%ﬂﬁ that -S-Iig of the 11 scores in
the interval or 6.05 of these-&cbres will Tie below 0s. Hence, the
- total number of scores-lﬁfow- 95 will be 35+ 6.05 = 41.05. 'This
ngrpber is. 51 per Cent\ oD the total number of cases in the distribu-
tion (EES- X 106)\
80 T

of 51, NS _
If the:gé;a%entﬂe ranks of many score values in the distribution
are tohe.Computed by this method, it is best to begin by preparing
a F}Pﬂﬁ]{lﬂﬁg '.frgquent:y (¢f) column to the right of the frequency
' mgg'lumq - the distribution, as has been done in Table g. The
c!.lmulatlyc frequency-column is prepared by “adding in" succes-
gLve Cla.ss fl:éc'{uencies from bottom to top. The entry opposite
the-lo]wvegt dnterval is the frequency in that interval: the entry
Oﬁiﬁﬂéﬁe f-hé sec_ofld interval is the sum of the frequex,xcies in the
isth:v;:.lu(}lﬁ sz?tﬁg:tervals the entry opposite the third interval
e -&irequencies in the first, second, and third intervals,
6tc. - The: éntry opposite the top. interval must, of course, be

Hence, the score of g5 has a percentile rank

R
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equal to N, the total number of cases in the distribution. The
following rules may then be applied in general to compute the
percentile corresponding to any given score.
1. Subtract from the given scote value the lower resl limit of
the interval in which it is contained.
2. Divide thic difference by the size of the interval.
3. Multiply this quotient by the frequency in the given interva.l..\
4. Add this product to the cumulative frequency below the given
 interval. "\.\\
5. Divide the result by the total number of cases (N) and mul-
tiply by 1oo. -This last resuft should rarely becarried to
more than one decimal place, and ordinarily should’be rounded
to the nearest whole value. &)

TABLE Qg I\

ILLUSTRATION 0¥ COMPUTATION OF A PERcEﬁTu.E RANK AND OF A
PERCENTILE FROM A GROUPED FREQUENCY DISTRIBUTION

¥ f 4d Compuiation of ¢l wathaaild iRaenk pfokg Seore g5:
6o~169 3 Bo| (1) g3 iz 93 Bg.3 = 5.5 units from the lower real
150-139 5 77 Iimit of ~t‘11:e' interval go—gg.
o 3 Bl@ss 351-5 of the size of the interval.
126129 8 G2 6.9} . . :
iTo-IIg 5 54 )\—; X 11 = 6.05 scores lic between g5 and 29.5.
1eo—1c9 3 490 (1) 35 lie below 8¢.5; hence + G.05 = 41.0
g9 ir 40 \4)' 35 scotes fie oetog o051 DeNCe 35 005 T 4105
Q a3,
- 790 B (71 (5 4195 v 00 = 51% of the measures lie below g3,
6o~ 69 8o} B .
iﬁ: ig \ 3" 1; Compuiation of the 50th Percentile:
30— 30 I 4 | (1) 50% of N = 40 scores lie below the soth percentile.
zo-v@p’ 3 3 | (2) 35 of these scores lie below 89.5; 40— 35 =5 of
e " these scores lie between 8g.5 and the 5oth percentile.
T\ ' {3) -IS—I of the interval go—go is below the soth percentile.
. (4 I_er o = 4.54 score units = distance from 8¢.5 to
soth percentile.
{5) Toth percentile = 89.5 + 4.54 = 94.04.

Computation of a Given Percentile : :
The procediires to be followed in determining a given percentile
is suggested by the preceding discussion. - If we had a list of the
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original scores arranged in order of size and wished to determine,
for example, the soth percentile, we would first determin.e bow
many scores constituted 5o per cent of the total number in th‘e
series, and would then count up from the bottom of the list until
we had reached this number, If there were an even number of -
' scores, the score halfway between the score last counted and tl;e
next above would then be the soth percentile. If the numberéof
scores were an odd number, the score corresponding to the" goth
percentile would be the middle score in the series. Agaim, How-
ever, if we are working directly from a grouped frequency dis-
tribution, we must follow a more complicated procgd’gre. Suppose,
for example, that we wish to determine the soth)percentile in the
- distribution given in Table 9. To do this, wemust first determine
~how many scores constitute go per ce ' 0f the total number of
scores in the distribution. Fifty peméent of 8o is 40. :
“We wish to determine, then, below what point along the scal

4o scores willlie. By examining the cumulative frequency column,
we note that tlﬂsf-‘ﬂdiﬁfa%}’&ai%qfﬁgﬁ}e interval go—gg, since 35

of the scores lie below j;hi:;finterval and 46 below the one above.
This means that we must find the point within the interval go—99
below which 40 — 38'="5 of the frequenciesin that interval lie. Five
frequencies rgpi‘eéent-f; of the total number of scores within the

intefvg.lr \S'Inoe the interval contains 16 units, the point desired is
‘1'5'1"@0 = 4.54 score unitsabove the lower real limit (8g.5) of the

N ;ii}t@t’_val.: Thus the soth percentile is 8g.5 + 4. 54 OF 04.04.
)" Expressed in more general terms, the procedure for computing

any éven percentile (that is, the point below which a given pes
cent of the measures lie), is as follows:

1. Find the given per cent of N.

2. Subtract from this number the number in the cumulative
frequency column which is next below it.

3. The desired percentile will lie in the interval corresponding t
the cumulative frequency which just exceeds the result ©
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Step 1. Divide the difference obtained in Step 2 by the fre-
quency in this interval. '

4. Multiply the quotient by the size of the interval.

5. Add this product to the lower limit of the interval. The

result is the desired percentile. :

Note: The procedures that have just been described for com-
puting percentiles and percentile ranks are by no means the most<
convenient that can be followed, particularly if a large number*of
percentiles or percentile ranks are to be computed. The prepsdjhg
methods have been presented primarily in order to acguaint the
student with the essential nature of the percentile. _Amore con-
venient graphic method of transposition will be pi.'b\sehted in the
following chapter. ' \

P
The Uses and Inierpreiation of Percentiles: :x\

The preceding discussions have been eoncerned primarily only
with the definition of percentilegiznd with their computation.
The more important questions oft¥¥in dirabivuatjonszand for what
specific purposes may percentiles be employed?” and “How may
percentiles be interpreted?\liave yet to be considered. Described
in general terms, the\fm'jor uses of percentiles in education and
psychology are: .

1. To facilitate‘the interpretation of a single measure in a dis-

tributiofof such measures;

2. To Qs.ke possible comparisons between and combinations o

méésures originally expressed in different units — particularly

. (to permit comparisons and combinations of scores on differ-

) ent tests (for individuals in the same group or in groups of
comparable ability); and

3. To provide a condensed description of a frequency distribu-

tion — particulasly to describe its variability and form.

A number of illustrations of the first two of these uses are sug-
gested in the manual in the study exercises corresponding to this
chapter. These questions will also draw attention to some of the
more important lmitations of percentiles in practical work. It
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will be left to the student to develop these illustrations and to
" discover these limitations for himself. It is believed that this
procedure will result in the acquisition of a more thorough under-
standing than if the answers to these questions were provided in
‘the textual discussion. An attempt bas been made, however, to
make these questions sufficiently leading so that most students
should have little difficulty in supplying the answers reqylred .
The questions:in the manual, then, and the answers to them\whlch
are supplied by the student, should be considered as.an. dntegral
- -and essential part of this whole discussion of percentilee.



CHAFPTER IV

GRAPHICAL REPRESENTATION OF
FREQUENCY DISTRIBUTIONS

IN ORDER to describe or interpret a given frequency distribu-
tion, we may often wish to have answers to questions such a.\s'tﬁe
following: Which measures occur most frequently? How, are the
measures distributed? Are they evenly distributed overt the whole
range, or do they tend to concentrate or pile up at éertain points
more than at others? How much do they tend 0 pile up at these
points? What is the general form of the digtribution — for ex-
ample, is it symmetrical in shape? p S

These and similar questions can, of colirse, be answered through
a detailed examination and compamson of the individual class
frequencies. Most of these chmg&eaﬁtémigﬁa%,fg%uency dis-
tribution, however, can be readily determined at a glance if the
distribution is portrayed ‘i.:{]éraphic form. Graphical representa-
tions can be much more éasily read than statistical tables, and are
particularly desirable if the data are to be presented in a report
intended for readers-untrained in the use of statistical methods.
Such representations, furthermore, are essential even to the trained
statistician(in“any study concerned primarily with the shape of
the distri tion.

Dhe' ﬁi:s‘togrm .

The simplest ‘form of graphical representation of a frequency
distribution is the histogram. This type of representation is
illustrated in Figure 1. The histogram in Figure 1 is based on
the frequency distribution given beside it. From this figure we
" may note several general characteristics of the histogram. The
vertical and horizontal lines at the left and at the bottom of the
figure are known as the oxes. The scale along the vertical axis
is that along which the frequencies in the individual intervals, or
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the class frequencies, are represented, and is referred to as the fre-
quency scale. The horizontal scale is that along which the scores ot
measures are represented. The horizontal scale is divided into a
number of equal units, each of which usually corresponds to one
of the intervals in the distribution. The numbers given below the

i
m-T Frzousncy DISTRIBUTION ©
,';_;14-'__ . " Weights '{?\
§12 o810z ()X
it 9307« ©
gl‘%‘ 8892 [
%- 8T - : 8387 12
% 6 - : {38-82 10
3 1 2 S X I N\ 73777 15
E4 _ . N = %] F
P - : \§ 63-67 6
l ' AN\ 5862 3
Y : 3

505'5";0";53083603551'00'
Weight in pounds |\
<o o .AbraulibFAE YL OV g.in

Frequency distribution and bistogram of weights of 2 group of 65 boys (dosed rectangle
. \ type of histogram).

horizontal scale spmietimes represent the midpoints of the intervals
and sometimes thelimits of the intervals. In Figure 1 the numbers
below the herizontal scale correspond to the class measures Of
interval midpoints. The base of each of the rectangles or columns
of th?‘@st'ogram corresponds to one of the intervals in the distri-
butign. The height of each column is proportional to the frequency
-~ iiythe corresponding interval in the distribution. Sometimes the
\hnes between the adjacent rectangles are omitted.

.'Ifhe' manuer in which the histogram is constructed is too ob-
vious to warrant any very detailed explanation. ‘The scale along
the vertical axis is laid off so as to provide for the largest class
frequency m the distribution and so as to result in the desired
Pl-'_QI.‘:Olﬁons_(hei_ght to width} in the completed histogram. The
vertical scale ahways begins with zero at the intersection of the two
axes. . The horizontal scale is divided into a number of equal
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intervals. The number of these intervals usually is two or three
more than the number of intervals in the frequency distribution
to be portrayed, so that a space may be left between the histogram
and the vertical axis and between the histogram and the right-hand
margin of the total space used. T he use of arithmetically ruled
paper will make it much easier to lay off these scales and to draw the

rectangles. :

N

The Frequency Polygon . R e
Another type of graphical representatibn quite commonly em-

ployed is the frequency polygon. The frequency ‘j;}ol}}'gon in

Figure 2 is based on the same distribution as the. histogram in

Figure 1. Figure 3 presents both these ﬁgures\op the same chart.
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The frequency polygon may be considered as having been de-
rived from the histogram by drawing straight lines joining the
midpoints of the upper bases of adjacent rectangles {or columns).
The polygon is closed at each end by drawing a line to the base
line from the midpoint of the upper base of each of the end columns
to the midpoint (on the base line) of the next outlying interval
(of zero frequency). It is, of course, not. necessary to construct
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the histogram first in order to constmct the polygon. The polygon.
may be constructed directly by markmg points directly above the
midpoint of eachinteriiulontipy &Iét:&?ﬁ%e‘?mm the base line propor-

tional to the frequency ifi‘the interval. These points are then

joined by stralght ]mes, dind the polygon is closed as before.

. The Cumulalive quuefwy Curve or the Ogive
* Another method of representing distributions g'ra.phlca]ly —
much less; fthuently used than the histogram or polygon but
supenc)\t,o them for certain purposes —is the cumulative fre-
quencY curve or ogive, sometimes known as the percentile curve.
mIt\is constructed in very much the same fashion as the polygon ex-
gept that the mmﬂame frequency is plotted for each interval rather
than the frequency within the interval, and that the points joined
by the straight lines are directly above the upper lmit of each
interval instead of above its midpoint. Figure 4 presents a cumu-
lative frequency:curve based on the same data as Figures 1 and 2.
Tn order to construct this curve, a cumulative frequency column was
first prepared for the distribution in the manner explained on
page 34. . The distribution and the cumulative frequency column

8,
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are given in the table beside the ogive. In the construction of
this ogive, the axes were prepared in the same fashion as for a
polygon, except that the vertical scale was laid off so as to include
the highest cumaulative frequency. - With reference to these axes,
then, a point was located which was directly above the upper limit
of the first interval (58-62) and 2 units from the base line along
the vertical scale. A second point was located which was directly
above the upper limit of the second interval and 8 units from tI&e
base line. Other points were similarly located for each of, the
remaining intervals, and these points were joined b'y':.,‘s’c‘raight
lines. The curve was then closed at the bottom in thesame fashion
as in the construction of a polygon. If now the, vertical scale is
divided into 1o or 100 equal parts, as has beendone at the right
of Figure 4, decile or percentile values corr{ssf’p}nding to any given

FrREQUENCY DHISTEIBUTION 6 \ 100
(Cumulative) BT N7 . T8
. : 55 N
Weights i _ :d mé{{‘-.rw,dbraul-ibl'a v.or in} 8
oB-102 I 65 5. Lt
0307 6 64 o g“ ; 17«
8392 .5 8 LNEuF ) de03
8387 12 13,{) &3t ' t lso =
7882 10 i\\ % 30+ 4‘—:—-—""‘—' §
7371 15 ()31 Ll Pl tuop
68-72 87,7 16 g i
63-67 \9 8 R %
5862 02 2. 5T -_{-+_' 2
'\ ) w+ i
.C\\ . el T l 410
R ' 0 L L
N\ & 6 70 75 80 85.50 95 100

\'"\‘ W . ) Weight in pounds
FIG. 4. '

Cumulative frequency t;'u.rve or ogive of weights of a group of 65 boys.

weight can be-read directly from it. = For example, if we erect a
perpendicular from the base line at the point 85 until it meets
the ogive, and then draw a horizontal line from this point until
it meets the scale at the right, we find that 73 per cent of the meas-
ures in the distribution are below 85 pounds. Similarly, 20 per



44 - FREQUENCY DISTRIBUTIONS

cent of the cases lie below the point 71 on the weight scale; in
other words, the weight measure 71 is at the 2o0th percentile. I
arithmetically ruled paper had been used, we would not have
needed actually to draw these vertical and horizontal lines, but
could have followed along the ruled lines on the chart to reach
the points desired, or could have used a ruler as a guide to deter-
_ mine them more conveniently. To determine the percentile ragk
of a weight of 83 pounds, for example, we could lay a rules on
the chart in a vertical position such that its edge fell at the pomt
83 on the base line, and would then mark the point on\ the ogwe
at which the same edge cut it. We would then hoId the ruler in
a horizontal position such that its edge coincidéd with the point
just determined, and would read the desired pércentile rank from.
the right-hand scale at-the point at whic}\lt\was cut by the ruler’s
edge.

The procedure just described can be Teversed in order to find
any given percentile. For exa.mp"ie, if we wished to find the 47th
percentile, we would My odivHilst Hétfontally across the chart so
that its upper edge corresponded to the point 47 on the percentile
scale, then mark the point at which that edge of the ruler cut the

ogive, and then ad}@t the ruler in a vertical position so that its

edge passed tbmhgh the point just determined. The desired
weight wouldithen be that at which the edge of the ruler cut the
base line ~—\m this case, about 77 pounds.

Thlsgraphlc method of transforming scores into perce.ntﬂe ranks
or per\entlle ranks into scores is much more convenient to apply
G2 large number of scores or percentile ranks are to be trans-
_Mormed) than the computational procedure explained on pages 33
to 35. This method may not be quite so accurate, because of
-possible errors made in plotting the ogive or in reading values from
it, but considering the inherent. unreliability of the percentile, it
is suffciently accurate for all Ppractical purposes.

Sometimes, when the absolute values of the cumulative fre-
quendies are of no interest in themselves, it is more convenient to
plot the percentile rank of the upper limit of each interval directly.
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instead of plotting the cumulative frequencies. To do this, we
first express each cumulative frequency as a per cent of the total
frequency; that is, we prepare a column of relative cumulative fre-
quencies. {Such a column has been prepared for each of the dis-
tributions in Table 2 on page 22 of the manual. The quickest way
to compute these numbers, particularly if a computing machine of

the multiplying type is available, is first to compute ~I_I;,—.°, and then

to multiply each cumulative frequency by this number. For\'t:hé )
distribution of ninth grade scores in Table 2, IT(:TE = 318‘::5 =2, 0260,
Each cumulative frequency was multiplied by thisf Jumber to
obtain the numbers in the column headed * Cumblative frequency
in per cents.””) Each of these relative cumq.la.ﬁ\fe frequencies, of
course, represents the percentile rank ofthe upper real limit of
the corresponding interval. We can thénlay off the vertical per-
centile scale directly, using the ruled.dites on our coordinate paper,
instead of later subdividing & scalé it 8bra dibrooyequalparts.
There is no very real distinietion between a cumulative fre-
quency curve and a percefitile curve. A distinction sometimes
made, however, is tha the curve is called a cumulative frequency
curve if the vertical’scale shows only cumulative frequencies, and
is called a percentilecurve if the vertical scale shows only the per-
centiles. Figgré"j, is then both a cumulative frequency curve and
a percentilszcilrve, since both types of scales are provided. The
term ogéve. tefers to the shape of the curve, and may be applied
eitherto ‘the cumulative frequency or the percentile curve.
{Ofves are sometimes drawn with the percentile or cumulative
frequency scale on the horizontal axis and the score scale on the

vertical axis.

Supplementary Suggestions for the Construction of Hislograms,
Polygons, and Ogives

1. Note that the sides of the rectangles in the histogram and the

turning points in the ogive always come above the real limits of
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the intervals, Since most of the integral measures will be con
sidered as having been taken to the nearest whole value, these
real limits will ordinarily lie .5 of a unit beyond the integral Hmits
of each interval. This fact must be taken into consideration in
indicating numerical values along the base line and in plotting
the figure. . o
2. Any of these figures should always carry a complete, tléat,
and concise #ifle.  This title should always completely idantify
the data represented, independently of any accompanyifig textual
description. In other words, the title should he sugii;tliat if the
chart is removed from context — for example, for the purpose of
- Preparing a lantern slide —it will contain -all the information
needed for its interpretation. \
3 The vertical and horizontal scales sh@id always be definitely
- labeled so that it is perfectly cloar what each scale represents and

what units are employed on each, . L)

4. If more than one figute 1sdra.wn on the same chart, each
should be drawmith 4 YRR S5 Yine (solid, broken, dotted,
etc.), and the meaning of each line indicated by a neat legend
Lk I in some other convenient space
on the chart.” In %g\érdl, if'there is any possibility that the chart
may be_later Teproduced in Printing, do not use colored inks for
dlsu“g.m”’hm% between superimposed figures, because of the ex-
pense 1nvo.l@'m color reproduction in printing. |

' “Sm?g;kiﬁg” Frequency Polygons and ng'ves
Ij:mll be noted that because of the erratic manner in which

. - gure will be much more rominent
in the po] than i the s P
" the polygon In' the ogive, Many of these irregularities

or of little or no significance,
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tribution, or may be characteristic only of the one sample of in-
dividuals considered and not generally characteristic of other
similar groups. In order to obtain a more highly generalized
picture, therefore, the practice of smoothing” the original figure
is sometimes followed. This may be done by drawing free-hand
a smooth curved line which comes as close as possible to passing
through all of the points used in plotting the original figure oI~
in other words, which most nearly coincides with the irregular
straight line outline. Such a line has been drawn free-hand-for

the polygon and ogive in Figures 5 and 6 respectively. « >
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Smgothing should be resorted to only when the group of individ-
ggl-lsﬁnirolved is not being studied for its own sake but is only
“being considered as a sample which is presumably representative
of some still larger group or population. The purpose of smooth-
ing, then, would be to remove from the polygon or ogive for the
sample those irregularities which would not be characteristic of
the distribution for the entire population. The principal danger
in this smoothing procedure is that it sometimes removes irregu-
larities which are not accidental, but which are real and sometimes

- significant characteristics of the distribution for the whole popula-



N\ W

48 FREQUENCY DISTRIBUTIONS

tion.- There is, of course, no way of telling by inspection whether '
or not a given irregularity is -

® accidental.

:: 1% There are other and more '
ol 1%  objective ways of smoothing

bt “~3w figures than the free-hanfl '

2407 4 w'*‘E method just described. In gef™s
£st o8 eral they are not sufficiently
.-%ao ) 1.} better than the free-hand
E:: m-§ method to warrant), their con-
% sl T 4 1 sideration here: Any smoothed
wt T ® figure, o métter how derived,
5 ¥ T  representsat best only a guess
M ararn -,'1-,1 R as tcklh)w the more bighly
Weight in pounds gederalized figure would look,

F15. 6. o\ a.nd no method of smoothing
Smoothed ogive of distribution of weights of\

*f\\"is highly reliable for this
ne ?"f‘?’s""h?ﬁm”“bl ar‘\’ 8 rpogse The only highly de-
pendable method of ehmma.tmg these accidental irregularities is

- to collect data from Jarger numbers of cases, that is, to plot the

results for larger samples.

The Form of §Frequency Distribution
There 4fe 2 number of terms used to describe the form of

_ frequchy distribution with which the student should becom

familiar in order that he may more readily comprehend the sub
'aequent discussions. :

A distribution is said to be bilaterally symmeltrical if the polygo!
or frequency curve can be folded along a vertical line so that th
two halves of the figure coincide. C,D, E, F, G, and H in Figure
{on next page) are lustrations of symmetrical curves.

A distribution s said to be skewed if it is lacking in symmetn
that is, if the measures tend to pile up at one end or the other ¢
the range of measures. A distribution is said to be negativel
skewed or skewed to the left if the measures pile up at the upp
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end of the scale, and positively skewed or skewed to the right if
the measures pile up at the lower end of the scale. Curve B in
Figure 7 is very markedly skewed to the right, while curve A is
moderately skewed to the left.

A curve is said to be bell-shaped if, as its name implies, it is
symmetrical, has one broad smooth hump in the middle, and
“ails off 7 gradually at either end. CurvesC, D and E in Figure 7¢
are bell-shaped, but exhibit various degrees of flatness or peal;ec\l—
ness. A\
The normal curve is a peculiar bell-shaped curve which I:a\m be
exactly defined only in terms of the equation used,‘?:d"pldt it.
This type of curve will be discussed in Chapter'Vfﬂ“. Cuarve F

ONar Ll Lt
\ WeEmetretT Tl dlnl
™3 Y.Org.m

Fic. 7.
Typical forms of frequency distributions,
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as a concise and simple picture of the large group from which it is
derived. Nothing further need be said about the general utility
of averages, although the distinction between different kinds of
“averages” will require the careful attention of the student. _

To the statistician, “average” is a general term applying to all
kinds of measures of central tendency derived from group data.
There are at least five such measures in common use, but on}y three
of them — the arithmetic mean, the median, and the  mode * —
are used with sufficient frequency in practical applications in edu-
cation and psychology to warrant their inclusion ing@first course in
statistics for students in those fields, )

2" £
LS
o\

THE ARITHMETIC MEAN

* The arithmetic mean of a series of mieasures is equal to the sum
of the measures divided by their fumber. Tt is the “average”
most often referred to in Popularissage, Using the algebrais nota-
tion in which wrw.dbral KNRY.org.in
: - M represents arithmetic mean,

2 means ff{he sum of,” 2

X reisqnts an individual score or measure,

‘N rep \sents the number of megsures,
it may be defived by the formula,

AS

X
AN . =

* The other cwo are the Aarmoni : intions of
BVerHges may be found in any geog ~pir " SCOMHIric maon, Descriptions

¥ ef . e
'3 s the e Greek Lo f‘sl?dr ,t:.rence book in statisticy,
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TaBLE 10
COMPUTATION OF THE MEAN BY THE “LONG MerHEOD "
{Applied toa Distsitiution with a Unit Interval}

Score Frequency
@) W (X X)
I I I9
8 E 13
17 : 3 51
1o 8 28 N
15 7 255 2 AN
14 13 - 182 N\
13 . ic E30 « \
12 4 48 Al
II 4 II 0
10 2 2
N=6o Br=Zf XX
TfXX. 8z _
u i 5o = THLN

NS
The mean could have been computedt by the method indicated
in the original definition by simply\summing all the individual
scores and dividing by N. Thegoore 17 would then have entered
into the addition column 3 times, thestlr 18lheaId tEaAn entered
8 times, etc. The proqﬁs: is simplified by adding the ‘products
3 X 17 = 51, 8 X 16 %423, etc., and exactly the same result is
secured. To facilitate the computation, a third column (headed
fXX)is a.ddegl\tb'fhe frequency distribution, in which is written
the product of edch score and the frequency with which it occurred,
and these products are added to secure the sum of all the measures.
In the"éése" of the illustration, therefore, it was necessary to add
Only\'fxé numbers to obtain the sum of all the measures, instead
(Padding 6o separate measures. The notation used in the problem
is'self-explanatory. -
The mean of a grouped frequency distribution can be computed
in a similar fashion by letting the midpoint of each interval rep-
resent all the scores in the interval, but in this case the accuracy
of the result is affected by the loss of identity of the original
‘measures. Consider the following grouped frequency distribution.
The uppermost interval contains one score. That score may
have had an original value anywhere within the limits g3-97 in-
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TABLE 11

COMPUTATION OF THE MEAN OF A GROUPED FREQUENCY DISTRIBUTION
BY THE “LoNe” METHOD

'\
mJ
\ W

Midpoint of
Interval Tnterval {X) ) fxXX)
9397 95 1 95
8892 90 3 270
83-87 85 2 170
78-82 8o 7 560 .
73717 . 785 12 goo LN
e o
- 03707 5 9 585,
58-62 6o 5 (3%
5357 55 3 A\ 105
4852 50 2 O 00
=754\ 3Bas=2fXX
zf é X" 3843
Mean = =22 == 41 00
k. 6

N

clusive, but nothing more concemiﬁé’ its original identity can be
determined from the table itst;],f{'. We therefore assume that the
best guess of \itsmnig?mlihgatweéi@,the midpoint of the interval
{95), and we'then use this'Walue in the subsequent computations.
In the same way, for ghe\interval whose midpoint is go, we assume
that the mean valu€ of the three original scores is go, or that theit

sum is 270; and so.on for the rest of the intervals.
| Now in t_];te‘,;ase" of this specific illustration, it happens that the
astisal vallljg‘bf the single score tabulated in the uppermost intet-
val was 04. Hence, the number (g5) entered in the third colurn
"‘fﬁ*’k‘t"-(‘ large, and an error (due to grouping) was therefore in-
Sroduced into- the computation. '
In‘the interval whose midpoint is go, the actual values of the
threg SCOres were 92, 89, and 91, The actual value of their sum
wa§ the'refo;'e-_272,j and the number entered in the third column
_(_27'0) Wwas 2 too small. . Ina similar fashion, an error due to grouping
Wﬂl be I.hre?e'l_lt in the number written in the third column for most
-of-h_t.he:-u.ltgrja_.ls, the only exceptions being those rare intervals
:ﬂirti'by ":ha'no_e the taean value of the scores in the interval is
tagethi:q‘]izlv:o the mldpoint. When all intervals are considered
T, ever, the errors in one direction are just about
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palanced by those in another, so that the final value obtained for
the mean is usually a very close approximation to the actual
value, that is, the value of the mean that would have resulted by
summing all of the original scores and dividing by their number.

Tt is left as an exercise for the student to show more specificaliy
why the errors in the mean that are due to grouping tend to cance:
out to zero when all intervals are considered.

The “ Shors” Method of Computing the Meon O
Consider the following numbers: ' N
217,011 'M'.\\.
217,000
217,006 oW
27,012
217,005 ()Y
What is the. quickest way of ﬁnd@n;gwtil% jnean of these numbers?
We note at once that each nfimber wdbraulibraryargds plus a
small number. We can copipute the mean of the original numbers
by simply finding the ydean of these small numbers and adding
this value to 217,00(9,3}&1 the following illustration.

Original Dtumbers Difference belween
“\\ 3 Number and 217,000
‘,\\:si';,on 1L
e 217,009 -9
~ \ 217,000 6
N - 217,012 : S v
217,005

5
43 (Sum of differences)

:";3 = 8.6 (Mean of small numbers or differences)
217,000 + 8.6 = 217,008.6 (Mean of large numbers)

.Compare the operations in the preceding illustration with those in
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the following application of the long, or direct, method to the same
numbers, ]
' © 217,011

217,009

217,006 1085043 214,008.6 (Mean)}

217,012 5

217,008

1,085,043 (Sum of numbers) A

2\
"N\

The advantages of the first or “short” method arg in this cast
quite obvious. By eliminating the necessity of dealing with o#)
large numbers in arithmetic computation (excepf for the last step)
we not only reach the final result more easily and quickly, but
th.l;@t}tal errors.

The process involved in the preceding,illustration represented &

specific application of the following, gettéralized rules for computiog

the mean of a %qe“n;gs.' é’éﬂ&‘j‘l%‘i“é‘f%f}&?gth@ so-called “short” method- -

The language used in thesewnules differs from that used in ﬂ:}e
preceding illustration, bygthe student should bave no difficalty
recognizing that the progess is essentially the same.

&
SHQRT,METHOD OF COMPUTING THE MEAN

1. Sel;ct\'aily convenient value as an “arbitrary reference
p@l P (tis usually best to select a value likely to be close
. ‘tb the actual mean.)

/2. Express each measure as a “deviation” from this arbitrary
)" reference point. (Hach “deviation” is equal to the dif-
ference between the measure and the arbitrary reference
point, If a measure is below the arbitrary reference points

its deviation will have a negative sign.)
Find the mean of these deviations by the usual method.
(Add algebraically, and divide the sum by the number of
- measures.) Call this mean of the deviations the “correction”
to the arbitrary reference point. (If the sum of the negative
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- deviations exceeds the sum of the positive deviations, this
correction will be negative.) .

4. Add (algebraically) this correction to. the arbitrary reference

point. The result is the mean of the original measures.

The student may demonstrate for himself that this process will
always yield the same result as that obtained by the usual method
of adding the original measures and dividing by their number, {
regardless of the value chosen as the arbitrary reference poi.n[:,\\
The Short Method Applied to the Frequency Distribution O

The occasion will very rarely if ever arise in which t]ie' student
will compute a mean in exactly the manner illustratéd‘in the pre-
ceding discussion. The purpose of the preceding discussion was
simply to explain the fundamental pature o the short method,
in order that the student might better understand its more practical
application to data arranged in frequericy distributions.

Let us first consider the applicagign ‘of the short method to a
frequency distribution with a uxg@t: intersdilcaulibrary org.in :

{"TABLE 12

SxorT METHOD OF Comgﬁ*r}ie MEAN APPLIED 10 A FREQUENCY
strn'x@r’ton wirH A UNTT INTERVAL

Score .8 ¢ jd
o 5 s
9 Ll
18 N 4 4 .
g\ 3 3 9 Tfd=51—29= 22
;%" 8 2 16 Tfd 22 _ 37
L I5 Iy 1 17 2 ==,
AR SNs 13 o /+ 51 N 6
SOV 13 10 -1 — 10
Vo2 4 -2 — &
N\ 1z 1 —3 - 3 -
10 2 -4 - 8
N=75 /=29
Mean = AR. + Eg{‘-? 14+ 0.37 = 14.37

To facilitate computation, the deviation of each score value
from the A.R. (abbreviation for arbitrary reference point) 1s
‘written in a third column called the “deviation” or & colurnn.
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The product of each frequency and the corresponding ¢ value ¥
then written in the f¢ (frequency X deviation) column. Thel
purpose of this step is clear. The score 17 occurs 3 times. Th&§
deviation of a single score of 17 from 14 is 3; the sum of the 'dem- %
tions of 3 such scores is 3 X 3 or g. The sum of the deviations of {3
all scores is then obtained by adding the numbers in the fd colua:
This sum is most conveniently secured by adding the positive &ﬂ_d..:
negative deviations separately, and then obtaining the glaehfm
sum of these partial sums, .\
The application of the short method to the grouped frequﬁflC?

distribtition is essentially the same as in the foregoing illustrations
the only difference being the way in whichithe deviations 31¢

expressed. - Consider the following illustration.

. S TABI.EI;":‘ 5
SHORT METEOD OF CoMruring MEAN APFIIED TO A GROUPED
' FREQUENCY DISTRIBUTION
Midpoint of - NN . )
Interval ., dbrdblibsaky 810
95 © 1 4 1 L fd = 24 —65=—4l "
IR SR
By 2 Te d N2 -
;‘g S iz: - {24 or— 76 (rounded)
6 & -t — I {correction in inferval units)
62. £ \g - . =18 X—.7ﬁ=—3-8°
gl g :i = ;g ioorrection in score units)
LN N=34

—_ Mean = AR, 4- correction
/— 65

=75 — 3.80 = 71.20

i

rather than in score units. The midpoint 8o, for example, deviates
:.'lrllilterval f“‘.’m- the AR! the midpoeint gg deviates 4 intervals, etc-.
e sum :;:he deviations divided by N, therefore, tells how mary

3 fd- AXR. deviates from the mean. In other words
N

themr:em(’ﬂbto the AR. in inlerval, rather thap ix
:mszmt& Smce i this case the interval is g times as large &
‘Soore unit, one must multiply the correction by s, transforming
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it into score units, before applying it to the AR. in the final step.

The process of computing the mean of a grouped {frequency.
djSﬁribution'--'ma.y now be recapitulated in the following general
rules: . o

. © STEPS IN THE COMPUTATION OF THE MEAN OF A
o G_ROUPED FREQUENCY DISTRIBUTION BY THE SHORT
S o METHOD - - - ’.\.s\
" 1. Select as the arbitrary reference point (A.R.) the midpoint of
" the interval which you think is most likely to«ontain the
~ actual mean® (The midpoint of any other intetval will do,
but the fd products will in general be smialler and therefore
" more convenient to handle if the A.@fis selected as sug-
gested here.) &8
" '2. Indicate, in a column headed “@,"*the number of intervals
" between each interval-midpeint and the AR. - (Simply
count away from the A.};..’g\gif:ﬂ \g%i%%t la.btin}e in either direc-
tion. Al deviations below the AR S b Priellded by a
negative sign.) \“ ' -
3. Multiply the 'freq\wncy in each interval by the r_:prresponding
d value, and, \}tité the products in a column headed “fd.”
- (Allfd p;Q(itréts below the A.R. will have a negative sign.)
4. Find the.sum of the positive products in the fd column, then
the sum of the negative products. Then add these sums
_dlgebraically. | | o
.4 \Divide this result by N, the total number of cases. (This ~
"\ quotient may be denoted by ¢’, and represents the *“correc-
~ tion” in interval units to the AR.) _
6. Multiply the guotient by the size of the interval. (This
product, which may be denoted by ¢, represents the “cor-
vection” to the AR. in score units.)

* Because of this manner of selecting it, the arbitrary reference point is sometimes
zalled the “Guessed Mean’ of the “* Assumed Mean” and is often denoted by the
abbreviation “G.M.” This notation has sometimes misled beginning students
because it seems to imply that the short method will not be accurate if a *zood”
Pucss is not made 6fthevalueoftheactual mean. . C
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7--Add this product algebraically to the A.R. (Subtract if

negative, add if positive.)

The reasons for calling this method the ““short” method may
not be too apparent. Since the number of intervals in a grouped
frequency distribution seldom exceeds zo, and since the A.R. is
usually taken near the middle of the distribution, it follows tha{
the numbers in the deviation column are usually only one-digit
numbers. All multiplications required in filling the fd colimn
may, therefore, be done mentally. For this reason, and_because
all long column addition is eliminated, the computation of the
wean by this method is extremely simple arithmetically, and also
provides fewer opportunities for error than dags'the long method.

Tt is, nevertheless, true that, as far as the somputation of the
mean is concerned, this method i “short?’Gn name only. When
the mean of a series of measyres is\the only measure desired
(when no measures of variability ateto be computed later) and
when an adding or calculatjng;p;é@e is available, time is saved
by simply Mdmg‘fﬁ@ﬂ?fg‘%ﬁ?%a%ﬁé; and dividing by their
number, Yﬁ'iﬁhout’""takﬁlg_;_tjme’fo construct the frequency distribu-
tion andto fll in the #%and /¢ columns called for by the short
method."_}II,ﬁ_i%ﬁ};H.-y, ]\d{v’wﬁr, it is desirable to construct the fre-
quency-dispﬁbutior_l for other reasons than for calculating the
mean.  UsuallyZalso, some measure of variability, such as the
- standard dqvié;tipp, is required in addition to the mean. As will
*:._be explaingd Tater, the short method is highly essential in the com-

= Butatioh of the standaid deviation. From the point of view of

cess of constructing a fre-

the dithe consumed in the entire pro
computing the mean and the standard

{Quency distribution and
deviation, the “short” method undoubtedly is a significant time-

savef,

. .~ THE MEDIAN
The median may be most simply defined as the middle measure

ina e _ all measures have been arranged in the order
of their size. Since the median is usually computed from a fre-
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quency distribution, the best definition in general is that the median
is that point on the scale above and below which half of the scores
or frequencies lie. . The median is thus the same as the soth per-
centile. The method of computing the soth percentile or median
has been explained (see page 36) and need noi be repeated here.
The usual abbreviation for the median is Mdr.
THE MODE 8

The mode of a frequency curve may be defined as that valpéélong
the horizontal scale at -which the height of the curve isgreatest.
Tt is sometimes also defined as the most frequently reClirring score
in the distribution. For example, in the distributien in Table 2,
page 13 of the text, the modal score would be 132, since it occurs
five times and no other occurs more than th getimes. The modal
score is obviously a very unstable meagre. In Table 2, for in-
stance, if the individual scoring 145:h%ttf scored 146 instead, and
if two of those scoring 112 had each scored 113, the mode would

have been changed from 112 t0. 146, A HGH WeiRE i measure,
usually called the “crude” riode, is the midpoint ofthe interval
containing the highest 'fgﬁcjuency in z relatively coarsely grouped
frequency distribut'{g‘..,’ or example, the crude mode of the dis-
tribution in Table s page 15, is 104.5. Even the crude. mode-is
highly unstablegfor distributions of small numbers of cases.
When there.is more than one outstanding. frequéncy in a dis-
tribution ((ad these frequendies are not in adjacent intervals}.
we desCribe the distribution as multi-modal. :
Iniall subsequent discussions and questions, the “mode” re-
(ferred to may be taken to mean the “crude” mode as here defined.

THE NUMBER OF SIGNIFICANT DIGITS IN THE MEAN

It is reasonably apparent that the accuracy of the result-of an
arithmetic computation depends upon the accuracy of the original
data. If each of the measures in a series represents only a rough
estimate of or coarse approxima.tion to an accurate measure of
the same thing, then the mean of these approximate measures:

kS
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must itself be considered as only an approximation. In this case,
it would not be consistent with the nature of the original data to
compute the mean to a large number of decimal places; on the
contrary, to de so would give the computed mean the appearance
of an accuracy which it does not possess, It is, therefore, important
that the student know to how many decimal places a mean sy
be computed. A

Suppose that we have a measure of the weight of each.6f"séven
similar objects, but that these weights have been determined with
various degrees of acturacy. These measures (in pounds) are as
follows: 12.34, 10.15, 9.2, 14., 7-363, 8., 10. ’];he first measure
has been taken to the nearest hundredth of 4\pound, and the real
weight of the thing measured may therefore be anywhere be-
tween 12.335 and 12.345 pounds. The\third measure has been
taken to the nearest tenth of a poundyénd the fourth only to the
nearest pound. 'We know, then, .tiiat if the weight of the fourth
object had bee_n more seeratalyidetermined, the digits following
the decimal point might have had any value. '

We can then write the\sé numbers in column order as follows:

' O 123
EEN N o 15
N\ o2
_ ‘14,
Ca T 1.363 L
- N

e\ A ' . qL.053%

) Most persons would write the sum of these numbers as 71.0535

and would then compute the mean to-.be_71'053 = 10.I504. ..+
. ;

2 S

N g
NS

the number of ' decimal places to which the result was carried

epending only upon the whim of the computer,

The fallacy in this procedure becomes apparent if we substitute
[01.' -each measure the highest arual ‘weight that each object
mgkt-'have' ha.d ‘The first object, for example, might really have
weighed almost 12.345 pounds, the fourth almost 14.¢ pounds.
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ete. The sum of these maximum weightsis 72.6135, as shown below.
: Maximum Values
12.345
16,155
9.2§
14.5 ar _ 72-6135 _ :
8. 5 N
9.5 ¢\

72.6135" O

Minimum Values = o
12.335 SRV
10.145 ' S

9.15 Y
13.5 K 09:4925

7.3625'~“~ B B

7-5

9.51 "x\f_Ww.dbl‘aUlib]“al‘y.org,in

i} . ;69:.'4925 :

The minimum value of the actual sum, as shown above, is
69.4925. The actual shean, therefore, may lie anywhere between:
10.3733 . .. and 9.92}5 ... The only digits in the mean first com-
puted, then, th@iw’e know to be correct are the two digits to the
leit of the deq’_mal point. This mean should, therefore, have been
rounded. 6\To, in order to avoid giving a misleading impression
of high! curacy. _

Inldny number, the digits known to be correct are called the
Sigmificant digits. The mean (10.1504), originally obtained in the
}'receding illustration, contains only two significant digits, as

does the sum 71.053. L

It is possible to set up a general rule for determining the number
of significant digits in any sumi. This rule is as follows: The last
significant digit in o sum cannol lie any farther io the right of the
derimal point than the: last significant digitin the least accurate of the

measures added. 'The least accuraté of the weight measures just’

considered are the fourth, sixth, and seventh (14,8, and 10);

= 9.9275. . -
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which contain o significant digit to the right of the de'cin.ml
point. Hence, the sum of these measures can contain no signifi-
cant digit to the right of the decimal point. _
This rule may be made clearer by the following illustration.
Given the following measures, to find their mean: 11.17343, I0.2,
4.49. We can write these as follows:

N\
1117343 A
10.2772P N
14.4077? W
35.7°277 Y

The question marks indicate that the digit in that place is un-
known and may have auy value from o to gaThe sum of the
digits in the hundredths column ig 71+ b= ?, since 16 plus
an indeterminate number is gtill unknqﬁqxi; Hence, we can be
sure of only the first three digits (35.7) Jn the sym.*
The mean of thege measures is then 35.79727 + 3 = 11.9777?7
3)35 2077
www.dbl'aulj%m‘%?-??g‘m
Similarly, if the sum of a ‘series of 1
(assuming that gl of these igits are
be written z.107; I, ai{{hdwxl below,
\ 2. I04¥T1
" 1X7)246. 5327777
AN 234
\V : 12
¢ 1
& “Hpe
~O 819
VvV 137

115

187

7 numbers is 246.532
significant), their mean may

. catrect — jts actual valye might be
8 or g, depending 1bon the value of the fourgy, digit in the second number — byt it
th i ich is not trye of the remaining
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We may be sure 117 is contained just once in 137, regardless of the
value of 7, and that it is also contained once (or very nearly once)
in 177, but we cannot carry the division farther.

The preceding examples {Jlustrate the general rule that the
sumber of significant digils in the mean of amy series is the same G5
the number of significant digils in ils sumt.

We now have the two rules that will enable us to determine to,
how many decimal places any mean may be carried. Fortunately,
the application of these rules is simplified in the case of integral
test scores. Since such scores are never ‘expressed in, decimals,
and since all of their digits are significant, the sum.of any set of
test scores always consists only of significant digits.& ‘Hence we can
immediately establish the following simpler ule? The number of
significant digils in the meon of any dis@rib@ﬁon of lest scores iS
equal to the number of digils in the sumpof-$he scores (of measures).

Thus, the mean of the dist_ributio’n:, 5h Table 10 contains only
three significant digits, since the siith of the scores (862) contains
only three digits. This mean should; yisthedutihhayedbgem rounded
to 14.4. Similarly, the s of the distribution in Table 11
contains four significant :(siigits (the sum is 384 5) and hence cannot
be meaningfully c'ai(fe’d any farther than to 71.20.

When the meamof a distribution has been- computed by the
short method}: wé do not determine the sum of the original scores
directly. . Hewever, we can readily determine how maomy digils
there afe'ih the sum by dropping the decimal places in the mean
(aSgﬁfst computed) and multiplying by N. For example, in

) .igé,tilé 12 the value of the mean as frst computed is 14.37. Drop-

ping the decimal places, We get 14, which when multiplied by 60
is 840. This is a close approximation to the sum of the original
scores and tells us that that sum would contain three digits.
Hence, this mean should be rounded to three digits, or to 14.4.

Similarly, in Table 13 the sum of the original scores would
contain four digits {71 X 54 = 3834), and hence the mean should
contain only four digits (as does the mean given, 73.20).

The rule for determining the maximum number of digits
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in’ which the mean of any distribution of integral measurés
may be expressed may then be stated as follows: Drop the
decimal places in the mea Sorst computed, muliiply by N, and

expressed in whole numbers,

These rules should he rigidly observed in all statis:tica]- Wbrk
that the student may do with measures of oontingggs’va-rlflbles'-
They do net 2pply to discrete data, The mean of ja,fdistributlo;l O_f
sizes of families, for example, may, ag far as.the. accuracy of t.l.le
individual measutes is concemned, be carried\io any nur_nber; Of
decimal places. - In such ‘ases, other considprations will dete_nni_r_{t?

. must always retain all signjﬁcaqff
digits in the mean, but'onlyiﬂgg‘g}_l&.ghguld retain none that aré

*

Carry it farther.
CVE should be noted ¢
in character - being

- though ‘these rules ang other o
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- The Importance of « Fyrors” im Statistical Work

A

* This discussion of significant digits may at-first appear to the
student as pedantic and much ado about little. - It may be ob-
served that so much attention has been. given to this issue, not
only because of its intrinsic significance, but because it is one of
the first concrete instances met in this course of the many seurces
of error which must be considered in the interpretation of statisti-
cal data. Another source of error —one which-will be considered
in the study exercises for this chapter — is the loss of identity’pf
the individual measures which results when measures are grouped
in a frequency distribution. - Other more important types of error
which will be considered later are errors in randopd $ampling and
errors due to lack of validity and reliability in.the measuring in-
struments used. These other sources of erronare far more seriots
than the one just discussed. Hence the;ﬁjle‘s here considered only
indicate the maximum acouracy which@ ¥ean may have; the num-
ber of significant digits which it actually contains is nearly always
less, and often much less, than.‘thesfwmltblwdﬁdaiqdiﬁtm
One of the worst mistakes'that can be made in statistical work
is that of uncritically aeepting all statistical facts at their face
value, or of presenﬁgg approximate or unreliable data without
drawing attentiono the errors which the data probably contain.
Statistics as aBody of knowledge and a system of techniques isin
spirit exactzahd accurate. Precision and accuracy of statement
are highlyt “désirable for their own sake. There is enough of loose
and gagekss thinking in education and psychology without statistics
tgelf ‘wmaking any contributions of this sort. Among the most
important elements in statistica] judgment, then, are keen aware-
ness of probable errois, and a disposition to qualify accordingly
any conclusions based upon statistical analyses. Statistical
tsmoke screens”’ should never be permitted to hide or obscure the
unreliable and ambiguous character of the original data with

which we so often have to deal.
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The Uses and Interprelation of the Measures of Ceniral Tendency
As in previous instances, the student will be left to write for
himself the most important section of this discussion of measures
of central tendency. The foregoing descriptions and explanations
should be adequate to enable him to identify the essential char-
acteristics and the mathematical properties of each of the “aver-
ages’’ considered. With the aid of the study exercises, he shoulth
be able to appreciate readily how much it may matter which type
of average is used in any given situation and for any given-gurpose
~ to discover that in many instances the choice of th& wrong
measure of central tendency may he as serious in i;s;éon;‘;equences
as a deliberate falsification. Again, the fact that he has, in part
at least, reasoned these things out for himself should result in
their more permanent retention and more,\cpﬁ‘plete assimilation.

S J

")
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CHAPTER VI
MEASURES OF VARIABILITY'

1 sEOULD be readily apparent that a measure of central tend-
ency alone can describe only one of the important characteristics~
of a distribution, and that it is equally essential to know how
compacily the measures are distributed about this point of céﬁ”tfal
tendency, or, conversely, how far they are scattered away from it.
Tn describing the distribution of intelligence for a giveniclass of
pupils, for example, it would not be sufficient tq‘l:niow only the
average 1.Q. of the class. For instructional Qu}-poses it is equally
i not more important to know how large are the individual
differences in intelligence within the cla.SQ or how heterogeneous
the group is in intelligence. In other. »words, we should like to
know whether the class is madg‘ﬁpwuthluaiwalﬁryfmsggﬂents of
average and near-average intelligence or contains a large propor-
tion of very bright and very dull pupils.

This condition in a freguency distribution is variously referred
to as dispersion, spredd, scatter, deviation, and variability. There
are several ways. of describing this characteristic quantitatively.
One of the sirﬁpiest but least adequate of these methods is to
state the yalties of the bighest and Jowest measures, or the range of
the dis\t\gﬁ)ﬁtion. To describe the variability in intelligence ina
given3school dlass, for example, We might say that the highest
< 'I\Q}’iﬁ 140 and the lowest is 73, T that the range of intelligence is
6% 1.Q. points. This type of description is not very meaningful,
since it is dependent only upon the two extreme individuals ic
the group, and since almost anything may be true of the form ot
the distribution between these extremes.

 Another way of describing the variability of 2 distribution is to
state the values of the roth and goth, or of the 25th and 75th, per-
centiles. For example, the knowledge that 10 per cent of the
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pupils in a given group are helow 8o pounds in weight while 'the
upper 1o per cent are above 140 pounds in weight gives us a fairly
accurate quantitative notion of the variability in weight of the
individuals in the group. The Semi-Interguartile Range (Q),
which is half of the distance between the upper and lower quartil{?s,
or half of the difference between the 7s5th and zs5th percentile
scores, is one of the most frequently used measures of varfabﬂi y-
These and other measures based upon percentiles, however,)do not
take into consideration the value of each individual écore within
the distribution, and are therefore unreliable and lacking in dtfj
scriptive value. Two distributions may show'(the same semi-
interquartile range, and yet the outlying scors in one distribution

may be far more extreme than in the other?, - -
The variability of the scores in a d tribution clearly depends

upon the amounts by which the indi¥idual scores deviate from the
measure of central tendency. To describe the variability of a
frequency distribution, dﬁ,]%%ﬁ?ifé’?ﬁﬁ&gq“ld determine the amo.unt
by which the score for eagli*individual difiers from the mean
score, considering all of thete differences (deviations) as positive,
and could then compute either the median or the mean of these
deviations. The %@‘-‘ ‘of these measures would be known as the
Medien Deviatipn from the mean, and is sometimes called the
Probable Devigion or, in distributions of sampling errors, the
Probable Ereor (PE). The mean of the deviations from the
mean, ig"sometimes called the Mean Deviation (or M.D.) but more
irei;;%t"lytheﬂwemge Deviation (ot AD.).* ‘Each of these measures
isyelatively easy to interpret. - The median deviation is the ab-
\solute amount of deviation from the mean that is exceeded by
half of the measurcs in the distribution, Thus, to say that the
median deviation in héight for a given group of individuals is two
Inches is'to say that half of the individuals in the group differ in
height from_ the average i'ndi'vidu'al'iu"-the group by two inches or
* Meon Devicidon, is a, befter name, since it recognises the distinction between
auerage as a general term- and megs a3 specific term The name Mean Deviation
will therefore ke used in this course, in spite of the

P : 8 C prevalence of the name Average
Deviation in educational and Peychological literatyre, - ' o
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more. The mean deviation is only a little more difficult to inter-
pret. The mean deviation (M.D.) is ordinarily larger than the
median deviation, for reasons that the student should be able to
deduce for himself. (See Question 8, page 47 of the manual.)

- The Siandard Deviation is by far the most widely used measure
of variability. It is similar to the average deviation except for
the fact that each deviation is squared before averaging and the(’\
result then reduced to a magnitude comparzble to the original
deviations by extracting its squarc root. To compute ditectly
the standard deviation of weights for a group of individuals, we
would first find the amount by which the weight of ea(fli individual
differed from the mean weight. We would then sfuare this de-
viation for each individual, add these squared values together and
divide by their number, and then extract {he square root of the
result. No attempt will be made herg {0 ‘explain the advantage
of thus squaring each deviation and later extracting the square
root of the average. The student swill have to take it on faith that
this procedure results in 2 more UifapRbraelibreg Yofrganiability
than the simpler M.D., and one thai is better adapted for use in
more complicated statigtical theory, as in sampling error and cor-
relation theory. Jt's this fact that the standard deviation is
ccential in. the. Galculation of other statistical constants that
results in its Pefg used so much more widely than the M.D. or
Q. i weere concerned only with the. description of variability
and ha@%b"bccasion to nse more complicated statistical technicues,
' We;Wéuld probably use the M.D. in preference to the S.D. in
p st cases. Since, however, in most statistical analyses we must in
afly event compute the standard deviation in order to calculate
other statistical measures, we use the S.D. instead of the M.D.

for the simpler descriptive purposes.

Computation of the M.D. . :

As has already been suggested, the M.D. of a series of measures
can be computed by finding the difference between each individual
measure and the mean of the series, and then finding the mean of
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these differences, all differences being considered as positive. The
* basic formula for the M.D. may be written as follows:

Zx
MD. -2 (2}

in which x represents the deviation of any measure from the mean
{not from the A.R.). 3 means “the sum of.” Only the absolute
magnitudes of the deviations are taken, that is, all deviatﬁQ{ls are
considered as positive. M
. To compute the M.D. by the direct method Just suggested
would ordinarily be very time-consuming, particulatly §f the mean
bhad been carried to several decimal places and{if“the number ot
- €ases were large. A much more practicable.procedure is to com-
pute the M.D, from the grouped frequency distribution by a
“short " method similar to that used for'computing the mean. _
The steps in this short method arg’described below. The state-

ments in brackets following eachstep show how it is applied in
the illustrative proble

wwwﬁb’%&%&%ﬁﬁﬂ)t@ipage 74-
STEPS IN COMPUTATION OF THE M.D. BY THE SHORT
~8 METHOD

I. Prepare a grotiped frequency distribution, and compute the
mean by the $hort method. Tf it is then found that the mean

i not eohtained in the same interval with the arbitrary
referériee point, it will be liecessary to construct a new pair
Qf{@énd fd columins with the A R. taken as the midpoint of

. },}he interval which contains the mean, The following steps
()" assume that the d and fZ columns used will satisfy this
Y essential condition. :
{In the illustrative problem, the

used in the original computation of the mean was the

midpoint of the interva] 73-77. Later it was found that

the mean (71.20) did not lie in this interval. The original

d and fd columns were therefore discarded, and another
pair constructed with 70 (

the midpoint of the interval
which containg 71.20) as the AR)]

arbitrary reference point
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». Find the sum of the frequencies for the intervals whose mid-
poinis are above the wean. Call this f,.
[The interval 73-77 is the first whose midpoint is above
71.20. ‘The sum of the frequencies in this and higher
intervals is 25. Hence, fo = 2 5.] .
3. Find the sum of the frequencies for the intervals whose
midpoints are below the mean. Call this f;.
[The interval 68-72 is the bighest whose midpoint is be-
low 71.20. The sum of the f's in this and all lower intcn\-\'mflﬁ
is 29. Hence, f; = 29.] \ \
4. Find the difierence between fo and fu- That is, g, (f ~ f2)-
[e5 —20=— 4] \‘
5. Find the difference between the mean audvthe arbitrary
reference point, that is, find A.R. — Mo Call this result ¢.
[AR. - M. =70— 7120~ —1.20¢~Heénce, ¢’ = —¥.20. If
the mean had been originally éomiputed from an A.R. of
70, the value of ¢’ would alz 52y have been found in com-
puting the mean.) . : s W w.dbraulibrary.org.in
6. Find the product of the Yesults of Steps 4 and 5. That Is,
find ¢/ (f. —fo)- R

[(~4) X (- n{&j’; 4.80. Hence, ¢ (fo— fo) = 4.80.]
7. Add the numbers in the fd column without regord o sign.
‘Denote theYesult by = |74}
[Thq@;ame sum of the f@’s is 85. Hence, Z 74| = 85
8. Multiply this result by the size (5) of the interval. That is,
findve (2 ).
S “\ [The interval used is one of five units. Hence, (zlfd)) =
U sx8s =425l
9. Add to this result the result of Step 6. That is, find
i) + ¢ (am o)
[425 + 4.80 = 429.80.]
10. Divide this result by N to get the M.D. That is, find
TR A ©

N\

[M.D. = i%io = 7.950...0F M.D. = 7.96]
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21 Round the result to the desired degree of accuracy, not:to
exceed the number of digits in the mean (which itself should

* - contain nomore digits than indicated by therules, pages 65-66).
" [The result is rounded to 7.96. The M.D. of a distribu-
tion of integral test scores should very rarely be carried to

7 " more’ than two decimal places.] :

. '.\r\
L : TaBLE 14 .
“TILUSTRATION OF COMPUTATION oF M.D. BY THE SHORT MEz#0D,
Discarded because s _ N
.- %o reference interval does . AN
o~ 4 "|'not contain the mean, 4. - - S
f| 4 ) d f2 N0 o
8802 3 3 9 C 4 12.\\_)‘:,— =—q :
BaByooz |2 4 1 3 16{ > ¢! = AR, — M. =70
|88 7 I 7+ 24 2 ~~~}4 71.20 = — 1.20
7377 12 o ) INNVE2 oo —fi) = —a X
B2 10| — 1 — 10 . O\ o —1.20= 4080 .
8567 [9| —2 T8 |yt~ o iZ[fd)=5 X 8 = 425
SBbm Fl~3 . —1g N2 —10 MD, — 423 +480 _
55757 3 —4  www-dbraulibifaryorg.in, D= =2
4852 Al s —1o/G5 -4 — 3 . 420.80 6
S I o T = 7.9
g A . Y U 54
N =54 | Original’ computation =T
of mean. PENY 85 Ifdl
ER i skl
RS SRR G Y gl Rt 1 13 I
79 = 712035
A&/ = 7120
© AN
N -
Ifshe student is curious about the reasons for the various steps

N i this procedure, he may find them explained in any good refer-
S, Jence book on statistics.® '

Since' the’ computational procedite used has no bearing on the
interpreiation of the M.D., no explanation of these ‘steps will be
attempted here. The student is asked to take this computational
procedure 6n faith, and to do all of his thinking about the M.D.
mterms of the fundé.me;ital__formuia- (2), or in terms of the defini-

* See Holzinger, Karl J. Statistical Mathods Students in Educati, . Toz-10Y.
Gina and Company, 1928. . _ for _ ’.”._. Heaiton, p}: I

- ;
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tion: The M.D. is the mean of the deviations taken fram the mean of
the distribution.

Compuiation of the S.D.

The standard deviation of a distribution may be defined as the
square root of the mean of the squared deviations from the means,
of the distribution. It may be found by finding the difference
(x = X — M) between each individual measure and the mean
ol the distribution, squaring these differences individually, addmg
the squared deviations and dividing the sum by N{ and then
extracting the square root of the result. The fundantental formula

for the S.D. is
pE AN '
S.D. J TR |

Again, because the direct method of g:oinf:utati_on just described
is too time-consuming to be practicable, the short method de-
scribed below should generally bewsed. As before, the statements
in brackets following each step show hswlitaislupplipd.in ﬁ{l actual
problem — that presented in\Table 15.

STEPS IN COMPUTA'BK&N OF THE S.D. BY THE SHORT METHOD

1. Prepare a groy.iped frequency distribution of the measures
and complete“the d and fd columns as in the computation of
the mean, Unlike the computation of the M.D., the mid-
poi:\ﬂ;}éf amy interval may be used as the A.R.

2. Mailtiply each number in the fd column by the corresponding

m‘i?uinber in -the 4 column, and write the result in a third
’ colurmn headed fd*.

[In the illustrative problem, the product of the d and fd
values for the top interval is 4 X 4 = 16. The remaining
numbers in the fd* column are similarly obtained.]

3. Find the algebraic sum of the numbers in the fd column a.nd

d
divide by N. That is, find %

[Eﬁ L2405 —ar 759 (rounded)]
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4. Square this result. That is, find (-ENﬁ .

[(=.759)* = .576 (rounded).]
5. Add the numbers in the fd* column and divide by ¥. That

is, find —EI—,‘:;E Note that all numbers in this column are

\
positive, A
[The sum of this column in Table 15 is 247, Hence
I 249 _ A
N =gy =454l N

6. Subtract from this quotient the result Of’S!’EEfJ‘ 4. That is.
S (sfd\e ‘
iy ( N ) 7 \d
[4-574 = .576 = 3.008] o
7- Extract the square root of this difference. That is, find
: zfd*  [3d\
This is the standard deviation in tnigrval units,
[The square 00t Of. 3.998 is 1.90.]

8. Multiply this squiare root by the size of the interval to get
the S.D, t'is, find

U . {—_\*E_f_‘f._ sfdy
LO7 8D.=i (=T (N) (s)
The'S.D. of the distribution in Taple g 51s1.99 X 5 = 9.95.]

9- Rotmd the result to the desired accuracy. (In general, the

A9.D. of a distribution of integral test scores should not be

\"\ ~ carried to more than two decimal places.)

As in the case of the M.D., the student is advised to accept
on faith the statement that this computational procedure will
yield very nearly the same result ag that obtained when the direct
method, described at the beginning of this section, ig applied to
the original measures, The standard deviation computed from a

groupad frequency distribution will be slightly inaccurate because

of the loss of indentity of the original measures (that is, because

Wl af
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TaBLE 15

ILusTRATION OF COMPUTATION OF S.1D. BY THE SHORT METHOD
M f P fd fdr '
95 I 3 4 106 Efd;—fﬂ__
w3 3 9 2 N T ey T T
85 2 2 4 - I AT )
8o » 1 7 TR T {— 7597 = 576 (rounded) \
75 12 o o 25 " 2ap
risd io - I — I IO o == = 4,808 A
635 0 — 2 —~18 36 ¥ 54 2 AN
o 5 —3 —I5 45 e A\
55 3 o~ —u g SRR RV
5oz —5 —1Io 50 N N

Vv 3-998\= Lgg
5.0. = 5 X 1.99 = 9.9 ' {

N=gq4 Zfd=—a1 2ny=ZIfP

of grouping errors), but this inaccuracy is ne}ﬁ\ljr always too slight
to be of any practical significance if I;hgé}requency distribution
has been properly constructed. The :slliort method of computa-
tion does not in itself result in any j?:&()t.

The student should make ng aftempimatlitmsnoinierpret the
8.D. in terms of Formula (g}, but should do all of his thinking
about this measure in teg:ms of its definition or of Formula {4).
Important Characteristics of the Various Measures of Variabilily

Measures of v’siiébi]ity are in general much more difficult to
interpret thaxmyeasures of central tendency. The observations in
the foﬂowiqg‘ﬁaragraphs, however, may help to make their mean-
ing mare\clear. '

'We{jﬂéy note first that the several measures of variability may
i%,_dne sense be considered as special types of “averages.” In-
stead of representing “average’’ position on a scale, they represent
“average” amounts of deviciton from such a position. Q) represents
the mean amount by which the upper and lower quartiles deviate
from the median, the median devistion represents the median
amount by which the fndividual measures deviate from the mean of
the distribution, the M.D. represents the mean amount by which
the various individuals in a group differ from the mean individual,
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while the sguare of the S.D. represents the mean value of the
squared deviations from the mean.

it may be helpful, also, to observe that in any bell-shaped
distribution, the S.D. will always be larger than the M.D,, and
the M.D. larger than the median deviation and Q. If the dis-
tribution approximates the form of the normal curve, the M.D.
will be about five-sixths as large as the $.D., and the Mdn. Dév
{median deviation) and Q wili each be about two—tlurds ashrge
as the 5.D.

Each of the measures of variability may be thoalght of as a
unit of distance along the scale in terms of which the position of
any measure may be described with referen¢e‘té the mean. If
the distribution closely approximates the formof the normal curve,
roughly two-thirds of the measures wil(lie within one $.D. of
the mean, about g5 per cent of the medsures will lie within two
S.D.s of the mean, and only a uegligible proportion (usually
less than 1 per cent}mmﬁiw thrg thean by more than three
S.DJs. Similarly, again fopdistributions closely approximating
the form of a normal distrdbution, about 57 per cent of the measures
will lie within one M¢BY of the mean. In any symmetrical dis-
tribution, of coursef\go per cent of the measures will Jie within one
median deviation or within one Q of the mean. The trouble with
the preceding generalizations is that they apply only to distribu-
tions that'axe very nearly normal or symmetrical, and that the
ma;,ox:%y of distributions with which we actaally deal are neither
apprommately normal nor approximately symmetrical. Distribu-
. tions may be found in which the S.D. , when measured off on both
sides of the mean, subtends more tha.n go per cent of the cases,
and others in which it subtends only slightly more than 5o per cent.
In some distributions the M.D. is smaller than Q, and in some
very much larger. Any generalizations such as those given in

this and the preceding paragraph must therefore be used with
exireme caution.

The_ complexity of the mathematical character of the S.D.
makes it the most difficult to interpret of the various measures
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of dispersion. - This difficulty is further increased by the fact that
the S.D. is so often expressed in units which are not in them-
selves meaningiul. Little meaning, for example, can be derived
from the statement that the distribution of scores on the fowa
Every-Pupil Test in Algebra for the pupils in the ninth grade of
the Jonestown High School shows a standard deviation of 6.3.
We cannot conclude from this statement that these pupils aré, "
either highly variable or very much alike in achievement, primatily
because we do not know what amount of difference in achievement
6.5 units on this test represents, but also because of the eomplexlty
of the S.D. If, however, we know that the S.D. of stores on the
same test i3 8.2 for the ninth graders in the Smithville H1gh School,
we can say that the latter group is more variable than the first in
whatever the test is measuring. In spite of the complexity of the
S.D., it is apparent that the group with{the larger S.D. must be
that in which the individual differences’(or individual deviations
from the mean) are more extremg™

The interpretation of the other meé'%u@%lftvéﬁﬁﬁl&}“m simi-
larly affected by the amblgulty of the measuring scale used. In
general, therefore, these.measures are most useful in education
and psychology for cofuparisons of variability in twa or more groups.
Their usefulness im“the description of a single group is largely
limited to thoge nstances in which they may be referred to a
meaningful sﬂandard but such descriptions, of course, also involve
comparisons.) ) For example, if we knew that in the #ypical Iowa
high sqhbch the S.D. of scores on the aforementioned algebra test
was4:8) and that the largest S.D. reported in any Jowa high school
Was)8. 5, then we could say that the pupils in the Smithville High
School constitute “an unusually heterogeneous group.”

The Uses and Interpretotion of Measures of Variabilily

Certain of the uses most frequently made of measures of vari-
ability will be suggested in the study exercises. In addition to
these uses the S.D. finds important applications in sampling error
theory, in correlation theory, in transforming test scores into
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comparable derived measures, in “scaling” the difficulty of
test items, and in the description of test reliability. Most of
these latter uses depend upon the relationship of the standard
deviation to the normal curve, and will be discussed in later
chapters, subsequent to a consideration of the properties of the
normal curve.

N\
As was true of the measures of central tendency, each measure

of variability has unique characteristics which make it ‘sitperior
to the other measures for certain purposes and inferipfifa)r others.

The study exercises will assist the student to recoguize the signifi-
cance of these characteristics, ’
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CHAPTER VII
THE NORMAL CURVE OF DISTRIBUTION

The Characleristics of the Normal Curve

TuE normal curve of distribution, more commonly known simply. .
as the normal curve, 1s 2 mathematical concept of great signifigdnieé
i statistical theory. Why it is so significant will be explained
later in this chapter and in those to follow, but before considering
its applications it may be well to consider first just what’the normal
curve is — what are its mathematical properﬁeé' and general
characteristics. AN

The normal curve of distribution. may’br.i\most rigidly defined as
the irequency curve whose height at(dgy point is inversely pro-
portional to the antilogarithm of half of the square of the distance
(measured in wnits of the standdrd” deviatio) lofthatrgoint from
the mean, or as a curve in ‘which the ordinate (y) at any given
number of sigma-units from’ the mean is given by the expression:

+$ ) a
& -_E.

Ke \ y =L * ©
in which y, igthe “ordinate at the mean, ¢ is the base (2.7183) of
the Napeﬂa:ﬁ“s;ystem of logarithms, and 2 is the distance of the
given o Yinate from the mean, measured in units of the standard
deviatien of the distribution.

P Thls definition, of course, will not be very meaningful to any
N student in this course who has not bad advanced training in
mathematics, not is he advised to attempt to derive much meaning
from it. It is presented here primarily in order to emphasize
early in this discussion that the normal curve is essentially a
mathematical sdeal — a1 ideal, not in the sense of a standard of
perfection or excellence, but in the sense of a product of the imagina-
tion. Many siilar ideal curves have no counterpart in reality;
the normal curve, however, happens to describe quite accurately
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the form of distribution of certain types of actual data, and thusis
of practical significance in statistical work.

A description which will be more meaningful to most students
than the preceding definition is that the normal curve is a sym-
metrical bell-shaped frequency curve which exhibits a certain
unique set of relationships between the ordinate at the mean of
the distribution and the ordinates at various sigma-distances from
the mean. This unique set of relationships is presented in partin

Figure 8. Since the curve is bilaterally symmetrical, oply. half of
the curve is shown. \ o
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Ordinates under the normal curve,

As is indicated in Figure 8, in any normal curve the ordinate
£ $.D. from the mean is 6.7 per cent of the ordinate at the mean.
The ordinate at 2g from the mean is 1 3.5 per cent of the mean

L per cent of the mean
A similar statement can be made about the ordinate
at any given sigma-distance from the mean. Table 16 presents

Fiese relationships more accurately for ordinates at one-hundredtbs

ordinate.
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of a standard deviation intervals® Table 16, then, may be con-
sidered as an alternate definition of the normal curve, -

B \'
- Fre. g O
HNormal curves of vs.tymg ratios of helght to "mdtb.”

Any size of hnea.r unit, of course, can bB\USf.‘d to represent I
sigma in plotting the curve, and the curve may be drawn with
any desired height of the mean ordinates The appearance of the
curve will differ markedly, dependmg“muﬂ}ﬁ t;Jg, e of scale
units in plotting it. Fach of thelturves in Figure o* for exa.mple,
is 2 true normal curve. Indeack of them the ratio between the
mean-ordinate and the ordinate at any given sigma-distance from
the mean is the same-as \Figure g, or as given in Table 16. Each
of these curves is equally “flat” or “peaked,” as these terms are
used in sta.tlstlcs, although their apparent flatness or peakedness
may differ considerably.. The effect of these variations in plotting
is to make-it very difficult to recognize by inspection whether or

* Tablet6'may be read as follows: Suppose we wish to find the ratio between the
ma-nsor%a.te and the on:hnate at 2.z7 sigma-units from the mean. We Jook for

2, z\m the colurun undcr Z at the left of the table, and then follow along the rew

thus identified until we get to the column headed .07. The ratio desired is that
which is in both the 2.t row and the .07 column, and is .og5e. The height of the
curve at 2,07 5.D.% from the mean js then .0g5o or ¢.5 per cent of its height at the
mean. Similarly, the ordinate at .62 sigma-units from the mean is 8251 or 82.5
per cent of the mean ordinate.

7 The ideal normal curve has no definite width, since it is asymptotic to the base
line. In p‘lctunng such curves, however, usually we arbitrarily cut off the curve
at about 3 S.D.’s from the mean at either end, since only a neghglble proportion of
the aréa under the curve is bevond these limits -
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TABLE 16
ORDINATES UNDER THE NoBMAL CurvE AT VARIOUS S1GMA-DISTANCES
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not a gi\.jegkﬁrve is normal, or to distin
's normaland one that g not. " The polygon in Figure 10, for
emmp)e, looks very much like a norma) curve, and, if seen alone,
FOUd pass unchallenged as such by most persons, but it is actually

190 “flat” to pe normal, as is she

wn by th i rmal
rve, ¥ the superimposed no

guish between one that
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Another characteristic — most important of all —is considered in
the next section (““Area Relationships under the Normal Curve ™).

Fic. 10.
Normal corve “fitted” to a,ft:equency polygon.

1t should be noted that the term f%ﬁrﬂﬂ‘ﬁé‘%&‘wuw@mﬂmply
a name for this particular cutve, and does not have any of the
usual connotations as, £03; example, in speaking of “a normal
child.” Normal, as & technical term in statistics, does not mean
“the ordinary or uswal condition”” or “iree from abnormalities.”*

In the subseqnién"t discussion, a “normal distribution” means
any frequency\dxstnbutlon whose form corresponds to that of the

normal CL}Qre»

Area\RcZaumskeps under the Normal Curve

“Since the ordinate at a given sigma-distance from the mean of
the€ normal curve always has the same relationship to the mean
ordinate, it follows that the ares under the curve included between
the mean ordinate and an ordinate a given sigma-distance from

t “There i3 nothing arhitrary or mysterious sbout varability which makes the
so-called normal type of distribution a necessaty, or any mare rational than any
other sort, or even more to he expected on a priori grounds, Nature daes not abhor
irvegular distributions.” -- Thorndike, E. L., Monial ond Social Meastrements, pp.

88-8g. -
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the mean is always the same proportion of the total area underthe
curve. If under a normal curve we erect perpendiculars from the
base line at the mean and at a point 1 S.D. from the mean, the
part of the area under the curve included between these perpen-
diculars will always be 34.13 per cent (rounded) of the total area.
The shaded area in Figure 13 corresponds to that just described.

, ~

NGRS
& 49.87
S 9.87%

Fre. 13.N )
Aren relationships under{th® normal curve,

Sailarly, 477252t WEEBPET B8 area will be included be-
tween the mean ordinate and an ordinate 2 S.D % from the mean,
and 49.87 per cent of the.total area will be subtended between the

mean and a point 3 S.D.’s from the mean. These statements and

similar statements for-ordinates at other distances from the mean
apply alike to ajy normal curve (regardless of the choice of units in
which it is Pl@_tfed)_—' These relationships for ordinates at one-
hundredthg'of'sigma, intervals are given in Table r7. (In this table,
x reprséeﬁts the distance from the mean, and hence grepr.eseﬂtfj

_ that distance in standard deviation units.) Thege ;
: expressed in ténths along the vertica] margins and in hundredths
glqng the hqrizont_al margins of the table, The numbers within

represent the pey cents of the total area which

ratios are
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represents the frequency — the numbers in Table 17 also represent
per cents of the total frequency, as the title of the table indicates.

Table 17 may be read as follows: Suppose we wish to find what
per cent of the total area under the normal curve is between the
mean and a point 1.36 S.D.'s from the mean. To find this per-

. T .
centage, we ran down the column under - until weget toz.3. We

then follow along the yow thus deterrained until we get to the cql-
umn headed .06. The number which is both in the 1.3 rowhand
in the .06 column is then seen to be 41:31, which is the per cent
desired. C I
TA_‘BLE 17 ..<
PER CENT 0F TOTAL AREA UNDER 7HE NORMAL CURVE\BETWEEN MEAN
OEDINATE AND ORDINATE AT ANY GIVEN SIGMA@JSTANCE FROM

THE MEAN* {
— : - -
E )
- 1) Lol .02 a3 . .0 Lo N\ o8 a7 o8 K-
a.e 00.06 oo.40  oo.Bc  or.2o  oL.SoALGTiQ  02.38 0270 03.I0  03.50
o T o3.08  o©4.38 .78 . os.17 o5 5%, wgg’ggdoﬁ‘;ﬁ of.75  ©7.14 ©7.53
6.2 07.03 oB.32 g ag. m . hrpas) 1b&ﬂag;/ #éﬂn 17.41
G.3 If.ye 12,17 I2.5% IZ. 13 31 g I5.17
o4 13,54 5.1 16.28 16, 64 N 20 x? 3 17 72 8.7¢
g Ig.15 Ig.50 Fo.Bs 40.~m 20.54 20.883 21.23 21,00 22.24
o5 22,57 zg,gx z3.24 2367 23 24.22 24.34 gé 25.1%  25.49
.7 25.80  26.1r  =6.42 {2673 21.04  27.34  27.64 97 2B.23 28.52
5.8 B8 20.70 29.40¢ 2ely 2005 30.23 3O.5T 3o 73 r.eb 3133
o0 31.50 3I.86 33‘5\\32,38 32.84 3290 3335 33.40 33.05  33.80
.o 1 38 fa%r 3185 3508 3531 3534 3577 5.0 b
Iz 23-42 ;”3_2'5‘ 'gmaﬁ z7.08  37.20  37.49 8770 37-30 38.10 . 35,30
T.2 38 40 39.66,C88.82  so.07  30.25  30.44 39.62  jo.bo 39-%‘! 40.15
L3 40.32  40.40 > 40.66 40.82 - 40.9¢ . 41.I5 4T3 4L.4F . 4102 4r.77
1.4 i1.p7  daeY az.22  a2.36 4451 43.65 4270 4201 43.06  43.19
NY, : g . .18 29 44.4%
1. csal 4. . £3.70  43.833  43.04 4406 4435 4
1% ﬁ.."\"ﬁ.éi ﬁ?i C44.B4 44.95  45.08 4ng 4g-=g 4§v25 4%-45
.y 280548 45.64  45.73 a45.82  43.01 45-93 4 = 461 46- 5 4 gg
1.8 oqb AT 46.40 46.56 46.64 4575 46.78 - 4b. 4 -Dg o g? 47- e
Lo N37 I3 47.70 47.26  47.37 © a7.38  ar.4r 4730 4756 47 47.
N\
\ : ’ . . .12  48.17
PN 78 4988 47.93  47.98 4803 4f.of 4
G} ig;i 1%;6 63 5.34 :.;35 :g;g ﬁgs :gg: :ggg :ggz
N 5.6c 44, 48 4871 . . . . . .
2.3 33,93 ia.g% 48.08  49.01 40,04 490.00  40.00 4G.IT  40.13 40-12
2.4 40.18  4o.z0 40.32  4D-2F  49.27  40.20 49.;1 49.32  49.34 40.3
' : ' 4B 20.49  49-5T  ap.52
2 40.38  40.40  4o.ar. 4943 4035 4040 494
e.g 40.83 4955 a9.30  49.57  4p.59 49-30 . 49.07 492’ 49.03  40.04
2y 40,65  40.60  a45.07  40.68  40.60 4570 4RI 40,72 m-gg_ 49. 3‘:
2.8 4074 40,75 4096 40.77  40.7Y  40.98  40.70 40 ;O 49-36_ 49-36
2.9 40.81  19.83  49.82 49 83 49.84 40.84 40.85 4¢0.85  49. 49
3o 10.87 T ] )
3.5 45.95 -
4.0 40.007
. -fl"° 49. 9ouaT

= The data in this table were tekea from Tadles for Statisticions and Biomeiriciens- Rdited by Kard
Pearson. Cambridge University Press.
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This table may be employed to derive a number of important
types of information about any normal distribution of measures.
These types of information, and ways in which Table 17 is used
to derive them, are explained in the numbered paragraphs below.
1. To find the number, proportion, or per cent of the cases in a

- normal distribution which lie above (or below) any point

along the scale. S

Tlustration: Given a normal distribution with M, &g,
S.D. = 15,and N = 150. To find the per cent of the cases
in the distribution which lie above 110. Thi§~iueésure is
I10-90 = 20 units above the mean, or (since, the' S.D. is 13)
:—: = 1.33 {rounded) sigma units above the:‘ miéan. According

- to Table 17, 40.82 per cent of the me sﬁ}\eé in the distribution
will lie between the mean and thig)point, that is, between
90 and 110. Since the distribution is symmetrical, 5o per
cent of the casesumilllie1shovgthe mean. Hence, 50 — 40.82
= 9.18 per cent of the cases will lie above 110. This result
may also be expressed either as a proportion (.0g18) of the
whole distribution,0r*as a number of cases (g.18 per cent of
150 = 13.97 ca@

As a further example, suppose we wish to find the per
cent of cases/that are below 63. Since this measure is below
the mean;’ we would first find the per cent between this
scoré.and the mean, and then subiract this percentage from
) §p\per cent, the total per cent below the mean. The result

il be. 3.59 per cent, which could be expressed also as a
~ proportion or as the number of cases in the manner already
described.

. To_ find the number, proportion, or per cent of the cases
which lie between any two given points along the scale.

Hlustration: To find the per cent of the total number of
cases which lie between 85 and 100 in the distribution just
considered. This percentage may be considered as the sum
of two percentages: the percentage between 85 and the mean
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{90), and the percentage between the mean and 100. 83 is
-33¢ below the mean, and hence, according to Table 17,
12.93 per cent of the cases would lie between it and the mean.
Similarly, 24.86 per cent would lie between the mean and
100, making a total of 37.79 per cent between 85 and 100.

If both of the given points lie on the same side of the mean,
the percentage of cases included between them must be corta
sidered as the difference between the percentages included
between each and the mean. For example, in this dlstn“bu-
tion, 28.81 per cent of the cases would lie between 8. and the
mean, and 7.93 per cent would lie between 87 and the mean.
Hence, 28.81 — 7.93 = 20.88 per cent would dte “between 78
and 8.

. To find the point on the scale above (o bélow) which a given
number, proportion, or per cent of the rases in a distribution
lie, ' W W

Mystration: To find the pomf \above which 30 per cent of
the cases lie, in the dlstnbutlol‘f” tsed MretHibpregedipg illustra-
tions. If 30 per cent of the cases lie above a desired point,
then 20 per cent must\lle between that point and the mean.
We must first fin \ﬂxen how many sigma units we must go
away from thegnean in order to subtend 20 per cent of the
cases. To dé this, we search within the body of Table 17 to
find the mhinber nearest 2zo. This number is 19.85, which
corres &nds to a deviation of .52 sigma units, since it lies
in the .5 row and in the .0z column. The desired point,
jchgn, is .52¢ above the mean. Since ¢ = 15, this point is
< m}fS units above the mean, and is equal to go + 7.8 = 97.8,
Thirty per cent of the measures in the distribution, then, lie
above g7.8. Similarly, to find the point above which 75 per
cent of the measures lie, we would note that, since 50 per
cent of the measures are above the mean, 25 per cent of the
meastres must be between the desired point and the mean.
We would then lock within the body of the table fo find the
" number nearest 25 per cent, which is 24. 86. 'This corresponds
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to a sigma deviation of .67.I Hence, the desired point is

S by X x5 = 10.05 units below the mean, or is at the point

90~ 10.05 = 79.95. Seventy-five per cent of the cases, then,
lie above the point 79-95 in the given distribution.

- To find the distance on either side of the mean which sub-
~ tends a given number, proportion, or per cent of the case

Dhustration: To find the distance on either side of the mean
which subtends the middle one-third of the cases ing the dis-
tribution already considered. We must first fing two points
at equal distances from the meaq in either direCtion between
which 3334 per cent of the cases lie. _This means that
10.666 or 16.67 per cent (rounded) of thé. tases will lie be

- tween the mean and either ope of thesepoints. We then look

in the body of the taple for the i}umber nearest 106.67.
‘This number is 16.64, which corresponds to a sigma deviation
of .43. The desired distance, “{:hen, Is .43 of a standard
devia.t.ion, or g%% 1iElEces ghe middle one-third of the
cases in the distribution;‘;are within 6.45 units of the mean. -
Accordingly, two-thirds of the cases in the distribution will
deviate from the redn by more than 6.48.

- To find the Oﬁébﬁi‘y that a single case selected at random

that a given score selected at random

from a distribution will jse above (or below) a given point on
IHquatiOn:'To determine the number of chances in 100

th{ggsingle scote selected at random from the distribution
already considered will have a value above 120, We note,

- The probability, ‘expressed in terms of “chances in 100,”
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distribution that satisfy this condition. The reasonableness
of this statement may be more apparent if considered with re-
ference to other types of situations. Suppose, for example,
that we wish to state the probability that a single card selected
at random from a deck of playing cards will be a diamond.
We know that each card in the deck has an equal chances
of being drawn and that one-fourth of the cards in the entire
deck are diamonds. Hence, we say ithat the chances\ ire
1in 4 or 25 in 100 that a single card drawn from the deck will
be a diamond. Similarly, the chances are 1 in s3\0fF 7.7 in

100 of drawing a card of any given denonunatlon, as, for
example, a king. Similarly, if a bag contaipdalarge number
of marbles, 27 per cent of which are bla}dg\éo per cent white,
and 13 per cent red, the chances arg~2% in roo that a single
marble drawn at random from th€ bag will be black, 6o in
100 that it will be white, and 1gdn 100 that it will be red.

In the majority of the appﬁtatlons which the student will
make of Table 17, the results il B @apm%dogé terms of
probability, and hence\lt is particularly Important that he
understand thoroughly'this and the following uses of Table 17,
(Numbers 3 to 8 in‘this serjes.)

. To find the poihf with referénce to which the probability is
of a given yalue that a single case selected at random will lie
above. (¢t below) that point.

Thlé}as the student will recognize from the preceding dis-
mﬁbn, is equivalent to 3 above, since the probability de-

(sived is the same as per cent of the cases that lie above
{or below) a given point.

. To find the probability that a single case selected at random
will e between two given pomt,s

This is equivalent to 2 above..
. To find the amount of deviation from the mean for w]:uch the

probability is of a given value that a single case selected at
random will deviate from the mean by mere or less than that

amount
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This is equivalent to 4 above. For example, if we wish
to find a deviation from the mean such that the chances
are even, or 5o In 100, that any given score selected at
random will deviate from the mean by less than this amount,
we would find that sigma deviation from the mean which
subtends 25 per cent of the cases. To do this, we would
look in the table for the number nearest 23, which, as'se"

have seen under 3 above, corresponds to L b7, If wejﬁsﬁed
[

to determine this value more accurately, we could inter-
polate between the values given in the table, “For example,
the numbers in the body of the table nédtest 2 5 per cent
are 24.86 and 25.1%7. The difference betz(een these numbers is

2517 ~ 24.86 = .31. 25— 24.86 =4. Hence, 25 lies ;—:’ of

the distance between 24.86 and 28.17. The sigma-distance
correspondiu@;wmﬂ@bésnm'gand that corresponding to
25.1715 .68. Hence, the sigma deviation desired correspond-

ing to 25 per cent my% of the distance between .67 and .68,

4 N
or .67 + P X,a&\= 67 + 0045 = .6745. Thus, the middle

one-half efcthe cases in the distribution are within .6745¢
of the. mean. In other words, the chances are even that any
sco e selected at random from a normal distribution will
deviate from the mean by less than 674506 {or by more than
#67450).  For this Teason, .67450 is known as the probable

{ " deviation (from the mean) of any measure selected at random
from a normal distribution.

In general, it is not essential in most applications in education

and psychology to interpolate between the values given in Table 7
as was done in the illustration under 8 above. In other words,
the student may use as a sufficiently close approximation the
value given in the table which is nearest that desired. For the
relatively few situations in which higher accuracy is demanded in
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practice, there are other tables * available in which the results are
carried to a larger number of decimal places and which may be
used instead of resorting to Interpolation in coarser tables.

The Significance of the Normal Curve in Education and Psychology
Ii the student were to make a broad and representative collec-
tion of frequency distributions from the actual data which may be
found in the research literature of education, psychology, anthzo-
pometry, and other related fields, and if he were to plot a snieoth
frequency curve for each of these distributions (makingthem
comparable by plotting all to the same sigma scale and-gll with the
same total area), he would find that his collectipri\contained a
wide variety of forms of distributions. SomeQufves would be
badly skewed to the right, some moderatelyygkewed to the left,
some bimodal, some “U-shaped,” some {J-shaped,” and some
almost rectangular. A large proportiof.f them could be roughly
described as bell-shaped and as)@idpmimg;%],;s,_gyg}rrpetrical in
form, with a single mode near, the center of the range and with
gradually decreasing frequani:ieé in each direction, but among
these bell-shaped curve:s.~§6me would have a high narrow peak
with long flat “tails&’\éthers would have broad flat “humps,”
and would tail off qhore sharply at the extremes, and still others
would show inteﬁﬁédiate degrees of flatness or peakedness. (See
Figure 7, paggé 49, and Figure 10, page 85.) How great may 1:{&
the variation in forms of distributions, even of a single trait, is
strikih'giy illustrated by the age distributions presented in Figure
12, (ﬁége 04), which are taken from the Report of the Fifteenth
Cemsus of the United States (1930)- '
* Because of this extreme variation in form, the student would
find it impossible to phrase 2 single generalized description that
would apply accurately to more than a small proportion of the
distributions collected. e might be able to classify all distribu-
tions into a number of fairly distinct types, and to provide a

* Tables for Siatisticions and Biomelricians. Edited by Kasl Pearson. Cambridge
University Press.
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generalized description of the form of the distributions in each
assification. For example, he might find that many of the curves.
are of the general type represented by curve A in Figure 7, that.
many others are of the type represented by curve B, while others
are roughly of the C type, etc. Yet he could find no single general-
ized curve which would provide a close fit to each of the distribu-
tions in this collection. : o

There is, then, no universal “law” concerning the form of frex
quency distributions in general. Unfortunately, however, thefe
appears to have been built up in the literature of educatien and
psychology the false conception that there s a single generalized
frequency curve which does accurately describe thé fundamental
form of nearly all distributions of educational\and psychological
data. ‘This misconception has been encousdgéd by the discus-
sions in many textbooks in elementary’st}t‘fistics in these fields.

Specifically, students have been led toybelieve erroneously that
ized description, and

the normal curve constitutes such-auruenalized, dese
that there is an underlying “lawiof normality”’ which applies to
all or nearly all types of _educational and psychological data.®
Because of the very widg {prevalence of this erroneous notion of a

- universal law of nom{a’[iﬁfr, and because many students beginning

* The following are dnéct guotations frem a jwumber of statistics texts in education
and psychology. W\ . .
#“Most mental and biological measures ar distributed according to the no
curve if a sufficiéntly large number of such meagures are distributed.”
“MeasuPeswof natural phenomena, as well as measures of mental and social traits,
tend to be distributed symmetrically about their central tendency in proportions which
ate detenmined by the laws of chance.” . . _
“Uff\ reasonably large number of MeAsUTeS of some trait or 'cha’l;a.ctensuc ate’
Labilated, they will in most cases approximate a pormal d1stnbu.ucn._ ) ]
' 1l-shaped distribution is so nearly universal in statistics

4 . A
This symmetrical or bel univ
that it has come to be called the normal curve.... Many scientists have come to

accept with some reservations the view that distributions of traits and abilities ffom
Tepresentative groups tend to be symmetrical or normal. . . . Therefore, any serious

departure from the normal curve.. i in general interpreted that the traits of

abilities measured do not represent a random sampling of such traits or abilities....
Consequently, if we wish to be sure that our computations of. t':e_ntrgl tendem:).r of
variability are accurate, we must meastire these traits or ahilities in a sufficient
mumber. .. to obtain a normal distribution.” . . -

Tn most instances, these statements have later beer: qualified in the same dis-

cussions, but not sufficiently to impress upon the student how numerous and impor-

tant are the exceptions to these broad and loose
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this course may already have this misconception firmly established

in their minds, it is essential that we begin our consideration of the
true place of the normal curve in education and psychology by
demonstrating the falsity of this conception.

‘We may note, first of all, that it is impossible to talk meaning-
fully about the form of distribution of measures of any human
trait, simply because the measures of any given trait may, show
different forms of distribution for different “ Ppopulations” ar'elassi-
fications of individyals, The statement, “The form of-the dis-

~ type of individuals is involved. To illustrate;it is meaningful
to refer to the form of distribution of hej P for all seven-year-
old boys in Iowa, or for white adult mén“in the United States,
or for women between the ages of 20 and 30 in the United Kingdom,
-but since the form of the distribution would undoubtedly differ
for each of these, mdgthanmlﬁmm, and since no one of them
can be considered as e popu]aifdn, We may not consider any single
frequency curve ag reprgsenﬁhg the form of the distribution of
height measurements Af\general. Since, then, we cannot talk
meaningfully ahout \t{ie"form of the distribution of a single trait,

it obviously is evemyless fruitful to attempt to describe in general
the distribution(gs any and all traits,

if measures are Plotted for 5 large sample of individuals who are all
of the same race, age, and sex, The distribution of height, however,
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for a sample of mixed ages, races, and sexes might show any form
of distribution, depending upon the proportion of persons of vari-
ous ages, or various races, or of the two sexes in the whole sample.
Again, weight is fairly * normally distributed for individuals of the
same race, age, sex, and height. .

Since measures of many physical traits do show approximately
normal distributions for many homogeneous populations, it seems
probable that the same would also be true for many mental traits, >
Tt is dangerous, however, to argi€ thus by analogy from ongtype
of trait to another. No assumptions concerning the formi of dis-
tribution of any trait should be made on this basis alone’ for any
population. The important consideration in this’Conhnection is
that we are nof justified in talking loosely abalit any underlying
“law of normality” as if such a law applied £0,the distribution of
measures of any trait regardless of the c];aga}ter of the population
considered. This is particularly important since so many of the
populations in which we are mtwmateﬂ:mlﬂdm@t}ogygqg psychology
are only very vaguely or ambiguously defined, and are seldom
highly homogeneous with refetence to other traits related to the
one under consideration ' :

Perhaps one of the piincipal reasons that we have exaggerated
or misrepresented, the' importance of the normal curve in educa-
tion and psychgibgy is the fact that the scores obtained on educa~
tional and, Réychological tests, for almost any unselected group
of pupils;"so frequently present what may be roughly described
as a Jeéll:shaped form of distribution. This, however, is not of
-ap.)(f very fundamental significance, since most of these tests are

(detiberately constructed so as to yield approzimately symmetrical
distributions of scores. In nearly all objective achievement test
construction, for instance, it is the aim of the test author so to
adjust the difficulty of the items and the distribution of their
difficulty that the average score made by the group to be tested
will approximate half of the possible score and that the range

t Actually, these distributions are slightly skewed positively. It is a matter of
common observation that excessive * aver-weight” is much pore cqnumon and gxtreme

thax excessive “under-weight,”
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of scores will extend from near zero to near the possible score.
If he desired to do o, the test author could as easily prepare a
test that would yield a distribution markedly skewed to the right
or one markedly skewed to the left, or of almost any other form.
Because the “units” employed in educational and psychological
test scales are arbitrarily established, because they fluctuate in
value even within the same scale, and because the amount of suth
fluctuation cannot be accurately controlled by the tesl;\'author:
‘We cannot conclude, simply because the obtained scorgs\ate sym-
‘metrically distributed, that if the same traits or abilitiés could be
‘measured along a “true” scale with a constant wnif; these “per-
fect” measures would also be symmetrically distributed. Further-
more, the scores obtained on educational and» psychological tests
are always characterized by accidental ertors of measurement due
to the limited sampling of items congtituting the test itself, that
is, due to the unreliability of the test! These accidental errors,
2s is true of Cetai SR PFHRENE dlan e data, do tend to be
normally distributed, ang therefore tend to produce a normal
distribution of the scores which contain thege errors. It may be
noted in this connection that the fact that a test shows a fairly
normal distribution i{\m itself not necessarily an indication that
the test is of highuality; in fact, the more completely worthless
or unreliable a\tédy }nay be — that is, the more the scores obtained
on it are dueonly to chance — the more likely it is to present a
normal disftibution of scores, _ _
Tt is%ot iraplied, because of the foregoing considerations, that
'thg.goimﬂ curve does not have a very important Place in statisti-
&al methods as applied to educational and psychological data.
Oh the contrary, there is one genoral type of data, with which the
statistician must be very setiously concerned, which under cer-
1ain conditions is almost invariably normally distributed. This
type of data mzy be descrihed in general as consisting of the
vatious kinds of “errorg” ‘which characterize educational and
psychological measurements, fncluding errors or chance fluctua-

tionsin random &D@Hﬂg, errors jn measurement (due to unre-
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liability of the tests and measuring instruments used), errors of
observation and judgment, and errors in prediction based on re-
gression equations. Thesetypes of errorsand the uses of the normal
curve in their statistical analysis will be considered in later chapters.
The so-called “law of normality,” then, may be safely considered
as applying only to certain types of chance data, or, more specific-
ally, to certain types of “errors” in the quantitative analysis of
educational and psychological data. In the interests of sound
thinking, the student should guard carefully against any tendenicy
to over-generalize concerning the normal curve or to.rhake to0
many assumplions of normality, particularly with. feference to
distributions of individual measures of mental or{physical traits,
and, most especially, when the population involved is not highly
homogeneous with reference to other fa:ét@fs related to those

studied. N x\

“Fisting” a Normal Curve i Gf&mﬁﬁqgggn or iH@'stagmm
Tt has already been noted that it is very drfifeult to tell by
inspection whether or not a~given histogram oI frequency polygon
approximates closely - & form of the normal curve. The only
sure method of judﬁ"{i'g’t e “normality” of a distribution is that
of direct compafison, and involves superimposing on the histo-
gram or polygqﬂ. 4 true normal curve of the same mean, standard
deviation, and total area. The procedure in “fitting” a normal
curve 4d a1 observed frequency distribution is described in the
fonow:i?tg“para.graphs. Since the student will have few occasions
togétfiply this method, he is advised to give this explanation only
{“y"éursory examination.
~ The procedure will be explained in terms of a concrete problem —
10 fit a novmal curve to the distribution in Table 18 on page 100.
The first -step 1s to determine the beight of the fitted normal

curve at the mean. This may be found by the formula
N

Yo" g2 -
in which y, Tepresents the pean ordinate, N the pgmber of cases
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in the distribution, ¢ the standard deviation in interval uniss, and
= 3.1410.
The 5.D..of the distribution in Table 18 is 9.95, Or 2:95 . 1.99
in interval units. Hence, 5
=54 _ 54
¥ 1.99‘\/2)(3.i416~1.99><2.51= 10.81 ™\
Since in any normal curve the ordinate at any given sigma-
distance from the mean is always a definite proportiof, 6f the
mean ordinate, we can now determine the ordinate at'the mid-
point of each interval (from Table 16). To de ftlﬁs, we first
determine how many sigma units (this time expressing sigma in
the original units) each interval midpoint deviatés from the mean.
“The midpoint of the interval 93-97 is 9§5.~71.20 = 23.80 score

e 23.80
units from the mean, or 3

9.55

The distance between the midpoints of any pair of adjacent in-
. wy dbraulikrary org.in

tervals is § score’untts gg“;i.s = .5025 sigma units. Hence the

deviations of the remainiggmidpoints can be quickly determined.
These deviations are g;vén i the third column in Table 18.
The next step is“p determine, for each interval, what is the

= 2,302 Sién’a units from the mean.

e TABLE 13
CoMputing qumms IN THE NORMAL DISTRIBUTION CORRESPONDING
P\ T0 AN OBSERVED DistriBuTION
Ighgg;lts 'FObserve:_:[ fDe\"iation Ratio of Ordinate (geo;BﬁrEeal
\ uencies  fro i
& teq . m Mean to Mean Ordinate frequency)
H;;\, " 100 o 2,8y 0154 .2
\ 95 X 2.39 <0575 -6
g‘-" 3 1.89 . 1646 1.8
Bg 2 1.39 - 3806 4.1
7 .88 .6ygo 7.3
;g 12 .38 .0303 I0.1
& 1o - .12 5028 10.7
ps] g — .Gz 8231 8.0
5 —1.13 L5281 5.7
Sg 3 — 1.63 . 2649 2.9
5 2 —2.13 L1835 1.1
45 _° — 2.03 .0315 -3
ﬁ" =54 53.7
.= 71,20 § =T,
SD. = "5 a0 . . Mean Ordinate = 10. 81
. I |
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ratio between the ordinate at its midpoint and the mean ordinate.
These ratios may be read directly from Table 16 (page 84) For
example, the number in the body of Table 16 corresponding to

25_ ~ 2.89 is .o154. This value, and others corresponding to the

deviations of the other interval midpoints, are presented in the
fourth column of Table 18. )

The next step is to multiply each ratio in column 4 by the
height of the mean ordinate. The result in each case will bé. the
height of the fitted curve at the midpoints of the intéryal in
question. Since this height is expressed in terms of the frequency
scale, the numbers in the last column may also be ¢onsidered as
the “theoretical frequencies”” in a normal distribution with the same
M, $.D., and N as the one given. The supy'of these frequencies
should always be just slightly less than tHe N of the original dis-

X

tribution. Tn the illustration, for exa.x:ﬂl:)le,X the sum of the theoreti-
cal frequencies is §3.7 a8 compared to's4 for the original frequencies.
The final step is to plot both ¢88 Foulibarhed itheoretical ”

frequencies on the same scgdel \The observed frequencies may be
represented either by a istogram or @ ploygon, but a smooth
curve should be d @’through the points determined by the
theoretical frequencies. Figure I3 presents the results of this
final step for the’data in Table 18,

1z} K72
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CHAPTER VIII
SAMPLING ERROR THEORY

T'he General Nature of Sampling Siudies

NEarLY all research studies in education and psychology are gf\
the type known as sampling studies, in which measurements or
observations are made of a limited number or “sample” of ibivid-
uals in order that generalizations may be established about the
still larger groups or “populations” of individl;a:lsf that these
samples are supposed to represent. Because the- itxdividua.ls com-
prising any of these populations differ from ohe another, and be-
cause chance or uncontrolled influences alwa}é'play some part in
determining which of these differing individuals are to constitute
the sample used, any single fact obtaifiedd from a sample (such as a
mean, median, percentiloyptindapdlisHation, etc.) is almost cer-
tain to differ by some amount :ffcifn the corresponding fact for the
whole population. Such “cbtained” facts, therefore, may never
be accepted at their face(value as exactly descriptive of the popu-
lation ipvolﬁed; but@sé always be considered as only approxima-
tions to, or as only estimales of, the corresponding “true” facts.
In order thatafiyy Such obtained fact may be propetly interpreted,
then, we nged-to know how “good” an estimate it is of the cor-
respondid@fact for the whole populatien; that is, we need to have
some,description of the dependability or reliability of the estimate

) a:nd: must qualify accordingly any generalization based upon it.
{ Sirch descriptions of reliability are extremely important, since
without them we might attribute real significance to facts that are
of only accidental origin or read important meanings into mere
coincidences. .

Some of the more important statistical techniques used to secure
these descriptions of reliability will be presented and explained
laterin this chapter. First of all, however, it might be well to con-
sider, in’ terms of a concrete fllustration, what are the major issues
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and what is the general nature of the logic underlying sampling
error theory,

Suppose that for some reason we wish to know the mean intelli-
gence quotient (1.Q.), as measured by the Stanford Revision of the
Binet-Simon scale, of all eighth grade pupils in the one-room rural
schools in the state of Towa. Since there are in Towa about 9,000
one-room rural schools and a considerably larger number of rutal
eighth grade pupils, it -obviously is beyond the facilities of any
single research organization to administeran individual mt@'}hgence
test to every pupil in this very largs “population.” In this situa-
tion, then, we would select a sample of rural eighth graders con-
 sisting of a relatively small number of pupils, and Would administer

our intelligence test only to these pupils. Wéswould then compute
the mean 1.Q. for these pupils and would cesisider this “obtained ”
Inean as an eshmate of the mean I. Q of fhe entire population (the
“true” mean).

The reliability of this obtamedamdwm .éﬁé{:{} \t,%;e of the entire
population of eighth grade om&¥room rural school pupils would
obviously depend upen th§ size and the representativeness of the
sample employed, that ig;\Wpon how it was selected. There are a
number of procedures: fbat could be followed in the selection of the
sample in & sﬂ:uatmn\of this kind. (See pages 130 to 143.) One
method would lig ta allow chance alone to determine which individ-
vals from the\whole population are to be selected. This could be
done by gecuring the names of @l eighth grade one-room rural
school 13%115 in the state, typing each name ona slip of paper, mix-
ing, thiasa slips very thoroughly in a container, and making a blind-

¢ fold selection of the desired number of slips. An equivalent pro-
¢dure would be to arrange all the names in alphabetical order and
to select every fortieth or fiftieth or seventy-fifth name from the
list until the desired number has been selected. A sample drawn
by either of these methods would be known as a random sample,
since the method of selection would guarantee independently to
every individual in the whole population an equal chgnce of being
one of those selected in the sample drawn. In actual practice, it is
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rarely practicable to follow a procedure of the type just described.
Other more practicable methods of sampling will be considered
later in the closing section of this chapter. For the purpose of this
illustration, however, we will assume that the sample involved has
been selected at randoms, and that it consists of 81 pupils.

Sinee the individuals constituting the sample were selected by
chance, we obviously could not expect the distribution of intelli-
gence quotients for these individuals to correspond exactly{tofhat
for the whole population. By chance, our sample may ‘sentain a
larger proportion of eighth graders of superior intelligencs than
would be found in all rural schools of the state, of it'may contain
a relatively large proportion of pupils of ipderior intelligence.
This would happen in exactly the same way.and for exactly the
Same reason that a bridge hand dealt froméa well-shuffled deck may
contain more cards of one suit thap of\any other. In a sense, in
drawing this sample the names were' “shuffled” and a sample
. dealt” in the same, wathatbtheylock is shuffled and hands dealt
in a bridge game. The mean-1.Q. for the pupils in this sample,
then, could not be expécted'to agree exactly with the corresponding
true mean, that is, the mean which would have been obtained had
@il pupils in the population been tested. Suppose, for instance,
that the mean X.Q(for the pupils in this sample is ¢8.5. This fact
would not enableCis to infer at once that the mean 1.Q. for all pu-

Pilsin this Bopiﬂation is'98.5, but only that the true mean is “some-
where rgs@:," 93.5. The next important consideration, then, is
that gf,jd}termining how “good”” an estimate of the true mean is
oup-obtained mean of 98.5. In other words, we need to know

ithin what distance of the true mean we may be highly confident

The Sompling Distribution of the Mean

-Before attempting to describe thys the reliability of our ob-
tained mean, let us first note that if we selected independently a
second sample of the same sjze in the same fashion from this popu-
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lation, we could not expect the distribution of intelligence for the
individuals in this second sample to be exactly the same as for
those in the first. This, again, is for exactly the same reason that
we could not expect two successive bridge hands to show the same
distribution of cards in the various suits. . Chance would practi-
cally guarantee that any two successive bridge hands would differ
in “value,” and in the same way chance would practically guar-
antee that any two samples drawn from the same population would ™
show some differences in the distributions of measures of any trait,
The mean 1.Q. obtained from our second samnple would almost cer-
tainly differ from that obtained from the first sample, 'fhls em-
phasizes the fact that neither of these obtained me':a.n:s; may be ac-
cepted as exactly descriptive of the whole population.

A third sample, similatly, would probably ield still another
value of the mean. If we continued to s lact, independently and
in the same fashion, a very large numbgr bf random samples of 81
cases each and recorded the megn, gy for cach sample, we would

X rauli

find that these means Would-dzslfrfbute themselvés over a consider-

able range of values. Some samples would by chance contain
unusually large proportigds of pupils of superior intelligence and
would yield relatively,}:(ig\h means. Others, by reason of the acci-
dents of sampling, %ould contain unusually large proportions of
dull pupils and mould yield relatively low means. We would find,
however, that :ns}ost of these means would cluster around some cen-
tral valuesand that only a relatively small pumber of the obtained
means&%ﬁld deviate far from this value. :
.',I‘\li!:’?distribution (like that just suggested) of the ohtained means
sofaivery large number of candom samples of the same size is known .
5 the sampling distribution of the mean of & sample of the given
size. 'The form of the sampling distribution of the mean of any
fairly large random sample will closely approxunate. that of the
normal distribution, This has been shown to be true even though
the individual measures in the population involved are not nor-
mally distributed (unless the sample is small and the departure

from normality is extreme).
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The Standard Error of the Mean of a Random Sample

The veliability of the mean of any simgle sample is dependent
upon the variability of the sampling distribution of such means.
If, in the long run, the means obtained from samples of the given
size are distributed over a very wide range of values, we obviously
cannot place very much dependence upon the mean obtained from
any one sample of that size, because of the possibility that the
particular sample considered may be one of those whosg(tagans
deviate markedly from the true mean. If, on the otherhand, the
means obtained from a large number of similar samplesidre in close
agreement — that is, if they show only a small ¥ahiation — then
any one of the means can be accepted as a clode. dpproximation to,
or as a dependable indication of, the true mean* If, then, we could
secure a measure of variability for a dlSt{Ib\lltlon of the means of &
large number of random samples ofs8t)cases each, we could use
this measure of variability to describe" the reliability of the mean of
any one random. %amplnmiu&pniﬁeéarg@‘he measure of variability
used for this purpose is the’s;sia‘rid'a.rd deviation and, when so used,
is known as the standardesyor. The standard ervor of the mean of o
given random sample is\Vie siandard deviation of the distribution of
means of o very largesmumber of random samples of the same size as the
given sample; and all, of course, drawn from the same population;
that is, the staldard error of the mean is the standard deviation of
the samphng distribution of the mean. To say that the mean of 2
given f&{ldom sample is unreliable is equivalent to saying that the
-means of other samples of the same size will fluctuate widely in
. ..\Va‘hie’ which again is equivalent to saying that a distribution of

such means would have a large standard d.evmt:lon, or that the
‘given mean has a Ia.rge sta,ndard error,

Leﬂek o Cmﬁdence :

) In the subsequent discussions it will frequently be desirable to

- Indicate in quaniitative terms what degree of confidence may be
Placed in certain inferences drawn from the facts obtained from a

random sample. Before proceeding with the interpretation of the



LEVELS OF CONFIDENCE 107

standard error of the mean, therefore, it may be well to introduce
and clarify the term level of confidence.

The degree or “level” of confidence with which a given assertion
may be made may most conveniently be defined in terms of praba-
bility. Suppose that g5 of the cards in a given deck of 100 cards
are marked in a certain fashion, the five remaining cards being un;
marked. Suppose that after this deck has been shuffled thap
oughly, we draw from it a single card at random. Sincel ouly
5 per cent of the cards are unmarked, we can, before lool;iu}g at the
card drawn, assert with obviously “high” confidence that ‘we have
drawn a marked card. The degree or level of Qonﬁdence with
which we can make this particular assertion)gwe will call the
'5 per cent level of confidence. This name Is suggested by the fact
that if we continued drawing cards in thi ‘fashion,* each time as-
serting that a marked card has heen drawn, we would in the long
run be wrong  per cent of the time. _Whenever we make any asser-
tion — whether or not it has aﬁ’)‘f‘tﬁiﬂgr o withreatrds or chance
events — with the same degree "of confidence with which we as-
serted in this illustrative sityation that a marked card was drawn,
We may say that we have.inade that assertion at the 5 per cent
level of confidence, \’ﬁh'é card illustration, of course, is of no sig-
nificance in itself, Gut only offers a convenient way of deﬁning a
certain degree 8f‘eonfidence.

Other 1evels\of confidence may be similarly defined. For exam-
ple, if onlireper cent of the cards in the deck are unmarked, we can
say atethe 2 per cent level of confidence that any single card drawn
aLmhdorn from the deck will be marked. Again, if we have drawn
] smgle card from a well-shufled deck of ordinary playing cards,
we may, before looking at the card, be confident at the 1.9 per cent
level that the card is something other than the ace of spades (the
probability of drawing the ace of spadesis 1/52 = .o1g). Similarly
we may be confident at the 1634 per cent level of confidence that
something other than a deuce will be thrown in a single throw of a -
.die, . Note' that the “per cent ” specified is negatively r_elated to the

*The card last drawn being replaced and the deck reshuffled before each draw.
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degree of confidence involved; that is, a small per cent denotes a
high degree of confidence or a low degree of uncertainty.

This expression, “level of confidence,” can be readily related to
the normal distribution. For example, we know that in any nor-
mal distribution go per cent of the cases lie within 2.58 standard
deviations of the mean, or that 1 per cent deviate from the mean
by more than that amount. Accordingly, we can make the stafe
ment at the 1 per cent level of confidence that any measure drawn
at random from a normal distribution will deviate from the'niean
by less than 2.58 standard deviations. Similarly,~if a single
measure has been selected at random from a norrga:i wdisteibution,
we may be confident at the s per cent level that it lies within
1.96 ¢ of the mean, or that its absolute dev@tion from the mean
does not exceed 1.96 o (“absolute” meaning that we are concerned
only with the size of the deviation, no\distinction being made be-
tween plus and minus deviations). _Sitnilarly, we may be confident
at the 2 per cent' TVEr PR L RIRASTEE rawn at random from a
normal distribution wil lie “fitﬁin 2.33 ¢ of the mean.

It may be well to note again that, while the term, “level of con-
fidence,” is most convepiently defined in terms of probability situ-
ations, it may be applied to assertions that cannot be directly re-
lated to statemen(s of probability, as will be illustrated later in
statements abdut/the true mean of a population.

N
Estabh?.sf{@ﬁ}; “Confidence Interval’ for the True Mean

We'are now ready to illustrate, in terms of the specific example
;already employed, how the mean of a sample may be interpreted
\Jn relation to its standard error. For the sake of this illustration
we will assume that the standard error of the mean of our sample
has already been found for us — that someone else has actually
taken a very large number of random samples of 81 cases each
from our population of rural eighth graders® and has found the
standard deviation of the distribution of the means of these sam-

* This is obvicusly an impracticable method of finding the standard etror, A mot®
practicable method will be suggested later,
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Ples to be oy = 1.2, Our sample mean, then, is ¢8.5, and its
standard error is 1.2, _

We have already noted that the distribution of obtained means
for large raudom samples of any given size is approximately normal.
We know, then, that cur obtained mean of 8.5 belongs somewhere
in a normal sampling distribution whose standard deviation is 1.2
and whose mean is the true mean of the population. Since we.dg™,
not know the true mean, we cannot say just where in this hypo:
thetical distribution our obtained mean lies. However, we tan
consider our obtained mean as having been drawn at random from
this distribution. Accordingly, we may be “conﬁdfeﬂf: at the
1 per cent level” that our obtained mean is within',%8 oy of the
true mean; that is, we may be confident at the £pe¥ cent level that
our obtained mean does not differ from tbp\)rhe mean by more
than 2.58 X 1.2 = 3.10, or that the absolute “sampling error” in
the obtained mean does not exceed 3.10.) "However, the sampling
error may be in either directionwhgnﬁbﬁhﬁ e pan; may, in the
limiting cases, be either 3.ro units higher (¢8.5 + 3.10 = 101.60)
or 3.10 units lower (8.5 — 3.16 = 05.40) than the obtained mean.
We may thus be confident at the 1 per cent level that the true mean
lies somewhere within¢the interval whose limits are 95.40 and
101.60. Similarly, w:inay be confident at the 2 per cent Jevel that
the true mean lipgbetween 95.70 and 101.30, and at the 5 per cent
level that it Jies’in the interval o6.15 to 100.85. In the same
fashion,'vgi:ould, if desired, set the limits corresponding te any
other level'of confidence, such as the 20 per cent level or the
o.1 pericent level. Any interval thus defined is known as a confi-
desive-interval. 'With reference to our sample mean of 8.5, for ex-
ampie, the ““2 per cent confidence interval” for the true mean is
95.7-101.3. _

- The student may well wonder why it is deemed necessary to in-
vent such strange expressions as “the z per cent level of confi-
dence” and “the 2 per cent confidence interval” to interpret ade-
quately the obtained mean and its standard error. It would ap-
Pear much simpler merely to say, “The chances are 98 in 100 that
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the true mean lies between 95.7 and 101.3.”7 The latter type of
statement is very frequently made; indeed, it is recommended in
many introductory statistical textbooks. However, it is illogical,
and should therefore be avoided. To say that the “chances” are
08 in 100 that the true mean Hes in a certain interval is to imply
that the true mean has many values, any of which may be ““drawn”
in a single instance. Actually, of course, the true mean is a fized ™
quantity; it does not fluctuate in value from time to time (ordtgm
sample to sample) and is not distributed either normally of Jn any
other fashion. Statements of probability may properly be ap-
plied to randomly distributed measures or events, pibiot to fixed
quantities. Tt Is quite proper to say that the probability is .oz (or
that the chances are 2 in 100) that the obained,mean of a random
sample will lie more than a given distanc £0m the true mean; we
may not, however, invert the statement,that is, we may not prop-
erly say that the probability is .oz t};at't?cie frue mean deviates more
than a given distancefroths RN Shtained mean, However,
we may avoid any inconsistency, by saying that we have a certain
“degree of confidence” that the true mean lies within a given in-
terval, and accordingly4lis is now the approved practice.
_ &
Testing an Exact H¥ypothesis about the True Mean :
Very frequently, in situations like the one we have been consid
ering, we ’rg;a‘.y“be especially intexested in the possibility that the
true me@ has some particular exact value.” In this case, for in-
stancg, we may be interested in the possibility that the mean 1.Q.
for the population of rural eighth grade pupils is 1o (the “norm”
“or the population at large). Indeed, the whole purpose of draw--
ing the sample may have been to see if there is any evidence that
rural pupils are #of “up to the norm” of intelligence. Accordingly,
in interpreting our results we might ask, “Ts it reasonable, in view
of what is known of our sample, to suppose that the true mean Is
100?” or “Is the hypothesis tenable that the true mean is 100?”
Again, recognizing that the tenability of any hypothests is a matter
of degree rather than an all-or-none proposition, we may ask, ““ How
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reasonable is it to suppose that the true mean is roo?” or, in-
versely, “With what degree of confidence may we reject the hy-
pothesis that the true mean of the rural eighth grade popul&tlon is
IOOP ¥

To answer these questions, we observe that #f the true mean
s 100, then our obtained mean contains a sampling error of
100 — 98.5 = 1.5. To ask, “How reasonable s it to suppose thaf
the true mean is 100?” is therefore equivalent to asking, “How
reasonable is it to suppose that the sampling error in this mean is
as large as 1.57” Since the standard error of the mean i3, 5.2, this
hypothetical sampling error is 1.5/1.2 = 1.25 times a8’ large as the
standard error. According to Table 17, samplingrrors this large
would be exceeded {in absolute magnitude) 21 r¢per cent of the
time. Hence, if we are to retain the hypoth,ests that the true mean
is 100, we must accept the notion that son@thmg has happened in
our one sample that (under this hypothesxs) would happen in the
long run only about once in five \tmesibrSmgﬁ ;hg,s tglqn is bardly
to be considered as unreasonable," we conclude that the hypothesis
is tenable. In other words, the Bypothesis that the true mean is roo
is reasonably consistent w1th the known facts that our sample mean
is 98.5 and its standa d.brror is 1.2. While we have thus shown
that the hypothesis’is tenable or reasonably consistent with what
was found in cupgample, we have by no means proved that it is frue.
There are man&"éther tenable hypotheses. The hypothesis that
the true m{:an is g7, for instance, is equally tenable, while the
hypothesls that the true mean is, sa,y, 99.3, 15 even more readily
-accepted

<Oh the other hand, there are many hypotheses that we would be
forced to reject in view of what we know of our one sample. Sup-
pose, for instance, that someone suggests that the true mean of our
rural eighth grade population is g3.5. If thisis the true mean, then
the sampling error in our obtained mean of ¢8.5 is 3.0, which is 2.5
times the standard error. According to Table 17, sampling errors
this large would be found only 1.2 per cent of the time in the means
of random samples of this size. Accordingly, to accept the hypoth-
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esis that the true mean is g5.5, we must also accept the notion that
something has happened in our one sample that happens only once
in roo times by chance alone. I we are unwilling, as most people
would be, to believe that anything so highly improbable has actu-
ally occurred in this particular case, our only choice is to reject the
hypothesis. 1In this case we can do so with a confidence at the
I.2 per cent level that the hypothesis is false.: Similarly, the hy-
pothesis that the true mean is 96.0 may be rejected at the’s.76
per cent level of confidence, O

In general, the principal steps in testing any exalt “bypothesis
about a population, given the appropriate facts fox aldample drawn
from that population, aze as follows: VO

(1) We note the discrepancy between fachand hypothesis, that
is, we determine the difference between the hypothetical true

* Some statisticians would prefer to say that this,hg;pothesis may be rejected at the
0.6 per cent level of confidence. They would Tedason that if the ttue mean were %5-5,
then means a¥ kigh as or hiher than woyld nd in ¢.6 per cent of all random
samples of this size. ﬁﬁ&?&é&‘ﬁf@%&%ﬁ%ﬁﬁﬁ consistent with the hypothesis
that the true mean i below g5.5, whichitt certain Tespects is an indefinite or inexact
hypothesis, as compared to the exact-hypothesis that the true mean i5 5.5} They
would thus take the divection nadeell as the magnitude of the hypothetical sampling
errot into consideration, Fn.8ituations like that here illustrated, it matters little
which interpretation is ved, so long as one understands clearly which definition
of Ievel of confidence is imm For instance, suppose we define the level of confidence
at which an exact hypethesis may be rejected in terms of the per cent of samples in
which the observed discrepancy from the hypothesis would be exceeded in absolute
magnitude (without regard to sign) if the hypothesis were true. Tt wonld then follow
that this partigilarhypothesis may be rejected at the 1.2 per cent level. On the other
band, suppogendhat, with equal arbitrariness, we define the level of confidence with
which we‘%y Tefect the hypothesis in terms of the per cent of the time that the ob-
served discrepancy from the hypothesis would be exceeded by other sampling errors
i thesame direction i the hypothesis were true. Tt would then follow that this

hypothesis may be rejected at the o.6 pet cent level.  Accordingly, when
W& test any exact hypothesis about the true mean, the practical result will be exactly
the same under either definition, so long as we employ comparable standards, If we
employ the 5 per cent level of confidence as a standard under the first definition, we
should have to employ the 2.5 per cent standard under the second, the 1 per cent level
under the first would he comparable {o the o.5 per cent level under the second, etc.

While the second definition may appear more fitting in situations like that here
llustrated, the first definition has & decided advantage in certain tests of the “null”
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measure and the measure obtained from the sample. This

difference is the hypothetical sampling error in the obtained

measure.

(2) We determine the relative frequency with which this hypo-
thetical sampling error would be exceeded in absolute magni-
tude in other similar samples if the hypothesis were true.
(This requires that we know the sampling distribution of the,
obtained measure.)

(3) We may then either accept or reject the hypothesis, depeﬂd—
ing upon this relative frequency. If the relative frequency is
small, we have the alternatives:

(a) of rejecting the hypothesis, maintaining tbat it is unrea-
sonable to suppose that something has‘happened in our
one sample that would happen only wery infrequently
if the hypothesis were true; ¢

(b) of accepting the hypothesis, maintaining that it is reason-
able to suppose that something has h }p}gened in our one
sample that only rarely.does happenlb ance.

If the relative frequency: is very small (say less than 2z or
1 per cent), we would(ordinarily prefer the first alternative,
being unwilling tofaceept the notion that a very rare event
bas actually comte off ” in our one sample, However, if the
relative freqdency is large (say more than 5 per cent), we
might admit’that the hypothesis is still tenable or has not
been dlsI\)fbved since it is not urreasonable fo suppose that
son%thmg has happened in our one sample that does happen
by thance at least once in twenty times.

*y " The level of confidence at which we may reject the hypath-

) esis, then, depends (by definition) upon the relative fre-
quency with which the hypothetical sarpling error would be
exceeded in absolute magnitude (without regard to direction)
if the hypothesis were true. If this relative frequency is

2 per cent, we may reject the.hypothesis at the 2 per cent

level of confidence, etc. Ordmanly, before we would cale-

gomally “reject” the hypothes:s at all, we would require
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that we be able to do so at least at the 5 per cent level, and
sometimes we would “retain” the hypothesis categorically
unless able to reject it at least at the 1 per cent level.

The student should have no trouble seeing how this generalized
procedure applies in the specific example used. We first deter-
mined the difference between our hypothetical true mean (100) and
our obtained mean (98.5). This hypothetical sampling error was
100 — ¢8.3 = 1.5.  We then observed that, since such samphig
errors are nhormally distributed with a standard deviation of @z, it
{ollows that sampling errors of 1.5 would be exceeded 21.pe} cent of
the time in random samples of this size. Accordingly, we did not
feel that a categorical rejection of the hypothesis gvas justified.

In the preceding examples the levels of configénce involved were
described with greater accuracy than is needefl for most practical
purposes. Ordinarily, instead of describixiéh:e level so accurately,
we would simply take the nearest lower™evel in which the per cent
is some convenien‘f‘ﬁ?[t%é’la.”_h?ﬁa'c:ﬁéﬁﬁiéﬁlp]es last considered, for
instance, we would ordinarily say'that the hypothesis that the true
mean is 95.5 may be rejected :’at' the 2 per cent level, or that the
hypothesis that the true{mean is ¢6.0 may be rejected at the
5 per cent level. 'I.‘he‘;s’%_er cent, 2 per cent and 1 per cent Jevels
are most often ust:!d\l}h this way. If any hypothesis may be re-
jected at or beyond'the 1 per cent level, we often say that the hy-
pothesis is “ pfactically certain’ to be false, and we usually are not
intereste@:i;ﬁfiscriminating between various degrees of “practical
certail}tix’*" Similarly, if an hypothesis may not be rejected with
at least'as much confidence as is implied in the * 5 per cent level,”

u{e‘usua.]ly would not consider rejecting it at all and hence would
not be interested in discriminating between lower levels of confi-
dence, However, the o.1 per cent and 20 per cent levels of confi-
dence are sometimes employed, and special provision is made for
them in some probability tables. Thus, all that one needs from
Table 17 for most practical purposes is the knowledge that 20

* The degree of confidence is lower; the numerical value of the fﬁ‘ cent used to
identify it is higher. . ‘ : ) C

£
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per cent of the cases in a normal distribution deviate from the
mean by 1.28 ¢ or more, 5 per cent deviate by at least 1.06 o,
2 per cent by 2.33 ¢, 1 per cent by 2.58 o, and o.x1 per cent by 3.3 o.

It showld now be apparent that one’s decision to “reject” or “ac-
cept” an hypothesis categorically depends somewhat upon his
temperament and upon the practical implications of his decision.
In some instances one might be unwilling to reject an hypothesis,
finally and categorically even though confident at the r per cént
level that it is false. In other instances one might reject the.hy-
Dothesis though nat confident even at the 5 per cent level fhat it is
false. In general, in educational and psychological résearch, one
does not reject an hypothesis unless he is confidentiat/least at the
2 per cent level, or more often at the 1 per centJevel, that it is a
false hypothesis” However, it is dangerous b recommend any
single standard practice — the selection s{ ‘t}he critical level is a
matter which must be subjectively deeided anew by the mvesti-
gator in each independent appli@@ﬁ@g}aigﬁgggﬁﬁ ogg_ the peculiar
nature of the situation involved. +\ '

It may be noted that the establishment of a confidence interval for
the true mean at any choseft Jevel of confidence consists of select-
ing, in turn, the lowest afd*highest values of the mean which con-
stitute tenable hypotﬁésés at that level. For instance, the hy-
pothesis that the tfu@ mean of our eighth grade population is g5.7
may barely be réjected at the 2 per cent level, as may the hypoth-
esis that it js'261.3. Accordingly, sy hypothesis that it lies out-
side the Qterval 95.7-101.3 may be rejected at least at the 2
per ce;n't:level of confidence, that is, 95.7-701.3 is the 2 per cent
cqn\ﬁ(}éﬁce interval. ' '

The Pormula Jfor Estimating the Standard Error of the Mean
. ' We have already noted that none of the uses of the standard error
of the mean that have just been considered would be practicable if

- * It has been very frequent practice in these fields, in the past, to demand that the

discrepancy between the hypothesis and the observed value be at least three times
the standard error. This is equivalent to employing the ¢.26 per centlevel of con-
fidence, which is considerably higher than should ordiparily be necessary.
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we had to determine the value of the standard error in the direct
manner suggested by the definition on page 106. Fortunately, how-
ever, we can derive a usefully accurate estimate of the standard
error of the mean of a certain sample even though we know only
the facts for that one sample. This is because it can be shown,
either empirically or by mathematical derivation, that the vatia-
bility of the means of a large number of random samples, ofsthe
same size depends upon (1) the number of cases, N, in eag!i’sahple,
and (2) the S.D. of the individual measures for the wholé popula-
tion. This relationship is indicated by the formulas ™ :
Tipop.) M
VE S @
This is a relationship which most studelii;s\wi]l have to accept on
faith * but its reasonableness may become apparent upon consider-
ation of the following iHlustration, <
Suppose that itis kABWH PEEYER'D. of individual 1.Q.%s for
the whole population just considered is 1o, and that these 1.Q. s are
normally distributed, as & indicated in the upper curve in F igure
I4 onpage 117. N ogn;‘le\:t us suppose that we select from this pop-
ulation a large mumber of samples, each consisting of only one pupil
selected at randdm from the whole population. The “mean” of
each of these gafmples would then be the same as the 1.Q). of the one
pupil in the’sample; hence, a distribution of the means of a very
large nmzpl)"er of such samples would show the same variability as
the individual I.Q.’s for the whole population. The standard devi-
_ation of the distribution of means for samples of one pupil each
Swould then be O3 = 10.0, as is shown by the second curve in Fig-
ure 14. Next let us suppose that we have selected another large
number of samples, each sample this time consisting of only fwe
pupils drawn at random from the whole population. Ttshould now
be apparent that the means of these samples would show less vari-
ability than the individual L.Q.’s for the whole population, or than

* The derivation of this formuty is relatively simple for anyone adept in algebra.
See Kelley, T. L., Statisticsl M. ethod, pp. 82-83. The Macmillan Company, 1g23.
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the means of samples of one case each. This follows from the fact

that while any sample of two cases may contain one individual
_drawn from either extreme of the distribution, it is most unlikely
~ that both individuals in the same sample will deviate equally far
and in the same direction from the general average. One of the two
individuals drawn will almost invariably have a higher 1.Q. than
the other, and the mean of their two 1.Q.’s will lie closer to the gén-
eral average than does the 1.Q. of the more extreme individual in
the pair. Hence, it seems reasonable that the djstributiplibf means
of samples of two cases each should be pictured witli‘a narrower
spread than the distribution of individual 1.Q.’s for {the whole pop-
ulation, as has been done in Figure 14.

New suppose that we select a very larnguumber of samples of
three cases each. The probability is now ¥ery much reduced that
all of the individuals in any one sample will deviate by a large
amocunt and in the san:(Lﬁ'duﬁtmn from the general average. The
probability of drawmg three very bnght or three very dull pupils
in a single sample of three cdses is surely less than the probability
of drawing two very briglitor two very dull pupils in a single sam-
ple of two cases. Aga.m\, therefore, it seems reasonable to picture
the distribution of Means of samples of three cases each with a nar-
rower spread ﬁhau the distribution of means of samples of two
cases each. A\ :

For sumla} reasons, the means of a large number of samples of
four cas\gsfa.ch would show less variability than the distribution of
means of samples of three cases each. Similarly, the distribution of
. ,mehns of samples of any given size would show less variability than
the means of samples of any smaller size.

Actual trials involving very large numbers of samples have shown
that the variability of the means for samples of any given size is
inversely proportional to the square root of the number of cases in
each sample. The means of samples of four cases each, for in-
stance, would show one half as much variability as the means of
samples of one case each. The means of samples of 16 cases each
would show one half as much variability as the means of samples
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of four cases each, or one fourth as much as the means of samples
of one case each. The means of samples of 25 cases each would be
one fifth as variable as the means of samples of one case each, etc.
This relationship is stated in a more general form by Formula. {7)-

We have now seen that, by means of Formula {7), we can state
immediately the reliability of the mean of any random sample it
we know the standard deviation of individual measures in the whole~
population and the number of cases in the sample. It may nexer:
theless appear, upon first consideration, that this formula caq']ia.:s‘fé
very little practical value, since it would be just as irqppaéticable
for us to determine the standard deviation of a whplefpﬁpulation
as to sclect a very large number of random samples.and determine
the standard error of the mean empirically in théanner suggested
on page 108. In actual practice we draw only’e e sample and must
teason as best we can from only the facts {for that sample.

In the practical situation, then, we st substitute for the un-
known @) i Formula (7) sem&i,éﬁimmﬁﬁﬂfyigrghich may be
derived from our sample. T he Obtained standard deviation of
sample is not a good estimate (particutarly for small samples), since
it tends to be smaller thdn'the standard deviation of the popula-
tion. However, it may be shown * that = &/ (¥ - 1), in which d
is a deviation frafi the sample mean and N is the number of cases
in the sample; s&an unbiased estimate of the variance (o%) of the
pOpula,tion.f‘\"f[‘his may be expressed in terms of the standard devi-
ation 'o‘ftt.h‘e' sarople, as follows: '

O . 2 N

£

from which we secure

| N .
est’d T(pop) = T (sample) 4 ‘ﬁ:_;

t The proof of thisis well within the understanding ?f a.ny'student capable Of follow-
ing relatively simple algebraic manipulations. See Lm('iq\'nst, E. F., Statistical Anal
ysis in Educational Research, pp- 48-50. Houghton Mifflin Company, 1940.

. 3 The variance of any distribution is the square of its standard deviation.
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- T we now substitute this estimate of @0y foT the actual oy,
.in Formula (7), we secure '

o - J N
_ es_t’d Fipop) _ Tisample) N-—1 __ Tisampl
' v'N

est’d.c'r 2

of VN VN1
. ’\
The working formula for the standard error of the mean of'a

random sample is then & \J)
T (sample) ("i’«. .
oy = —ompt . " (8)
¥ vN-—1

_ Y
Since when the sample is large VN — 1 will not differ appreci-
ably from VN , it has been rather general;g‘r&ctice In the past to use
the somewhat simpler expression Y
wwrw.d braulibl'ary,grg".in

= Ftsempie)

Ty =

as the formula for the stdndard error of the mean of a large sample.
However, very littl iég’a.ined by introducing this inaccuracy, and
the student is thérefore advised to use the correct Formula (8), no
matter how large the sample may be,

The U. )ﬂ?‘x;’;e Standard Error of the Mean with Large Samples
Wejé)ﬂa now ready to consider in terms of a fresh illustration how
Formtla (8) may be applied. Suppose we wish to know the mean
\”\ikei'ght of all ten-year-old boys in the state of Towa. Let us sup-
Pose that we have selected a random sample of 50 boys from this
population, and that we have found their mean weight to be 77
pounds and the S.D. of their weights to be ¢.8 pounds. We then
reason that if we were to continue drawing random samples of this
size from this population until we had a very large number of them
and were to construct a frequency distribution of the means of these
samples, we would find that these means would be normally dis-
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tributed and, according to Formula (8), that the S.D; of this dis::
tribution would be approximately . s T
Ou = —_— = 98 _ I4POi]IL‘;S B

Now we know that our obtained mean of 77 belongs sormnewhere in
this hypothetical normal distribution of means. If our sample haps
pens to contain an unusually large proportion of boys who{axé
heavier than most boys of their age, our mean of 77 might be
near the upper extreme of the sampling distribution, ag'shown in

? 0\ ?
O

-
[

‘o '..

—2.330—> (—a;:33]:v-b -

7374 W :dbrauljb(gé’ﬁ?,or’g,in
«Minimum” . Obfained “Maximumm.
value of «inean value of
N N true mean

74

-
s{ﬁér cent confidence interval

) F1G. 13-
Tlustrating fhe 2 per cent confidence interval for the frue mean.
£ t\ e
N\

Figure.;wﬁwe A, above. On the other hand, our sample may
be on&which is accidentally very heavily loaded with light-weight
boys'of this age, in which case our obtained mean of 77 may be

ar the lower extreme of the sampling distribution, as shown in
Curve B of Figure 15. Suppose, then, that we allow for the possi-
bility that the obtained mean deviates from the true mean by an
amount which would be exceeded by chance only twice in 100
times, that is, suppose we allow for the possibility that the ob-
tained mean deviates 2.33 ¢ from the true mean (in either direc-
tion). 1If the obtained mean is 2.33 o above the true mean, then
the true mean is as low as 73.74 pounds. Tt the obtained mean is
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2.33 ¢ below the true mean, then the latter is 80.26 pounds. We
may thus be quite confident (2 per cent level) that the true mean
lies between 73.7 and 8o.3 pounds. If we prefer an interval that
we may be even r_gbi"e highly confident contains the true mean, we
may employ the "1 per cent confidence interval (73.4-80.6), or
even the o.1 per cent interval, which in this case is 77 &+ 3.3 on
(or 72.4-81.6). On the other band, if we are satisfied with'a
lower degree of confidence, we may employ the 5 per cent iiterval
(74-3-79-7)- > :

We may use this same situation to Hlustrate the- testmg of an
exact hypothesis. For the sake of this ﬂlustra,tl.op, let us assume
now that no confidence interval for the truéean has yet been
established, but that the standard error of\the mean has been
estimated at 1.4. Let us suppose also,fHat it is known that the
mean weight for boys of this age in(the country at large is 73
pounds, and that we are therefor rt:lcularly interested in the
hypothesis that PRI Bls0 the T an for Towa boys of this age.
To test this hypothesis, we, reason that if it is true then our ob-
tained mean of 77 pounds Ccontains a sampling error of 2 pounds,
which is 2/1.4 = 1.43.fimes the standard error of the mean. We
know, however, @t "sampling errors larger than this occur
15.2 per cent of the time by chance alone. While we may therefore
be confidéntiatthe 15 per cent level that the bypothesis is false,
this is ha:dly a sufficient degree of confidence to justify a cate-
gonca\‘rg;ectl()t} of the hypothesis. In other words, we would
admit}hat the hypothesis is tenable, or that it is reasonably con-
sigtent with what we know about our one sample. Had we al-

< ‘ready determined a confidence interval (conforming to whatever

level of confidence we had decided to employ), we would, of course,
not need to “test”’ the hypothesis (that the true mean is 735) in this
fashion, but would only have to note whether or not the interval
includes 75.

It is very important to note that the procedures just illustrated
in establishing a confidence interval for, or in testing an exact
hypothesis about, the true mean are not valid for small samples.
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The appropriate corresponding procedures for small samples will
be presented later (pages 136-130). '

The Probable Error of the Mean y

We have already seen (page 9z) that the probeble deviation of a
randomly selected measure from the mean of a normal distribution
is .6745 times the standard deviation of the distribution,  The
probable deviation of an obtained mean from the true mean is
called the Probable Error (P.E.) of the mean. It may-be con-
veniently defined as the sampling ertor in the mean{which is ex-
ceeded half of the time, or for which the chanceg @re even that it
will be exceeded in any individual instance. \Rerhaps because it
may be so neatly defined and presumably, ihay therefore be more
readily understood, the probable errox hﬁ often been used in pref-
erence to the standard error to describ® the reliability of the mean.
Tts formula is \-.;3.:{';.;,abl‘aulibral‘y,org,jn
@745 Tisample) _

P.E.j =~ .6%43 i {(9)
u N\ v N — _ _

Tables of area rélationships under the normal curve, based upon

deviations fronithe mean in P.E. rather than sigma units, may be

found in mhany statistics references. One such table is given on

page 2@1 of the Appendix. This table may be used in very much

the same way as Table 17. For example, if an obtained mean of
"2\65 "has a probable error of 4.0, We may be confident at the 2

) per cent level * that the true mean lies within 3.45 X 4.0 = 13.80
units of the obtained mean, or in the interval 12.2-39.8.

When the P.E. is used to measure the reliability of the mean, it is
customarily written immediately folHowing the obtained mean, with
a “plus or minus” sign between, '~ For example, the statement that

~an obtained mean is 77 & 2 would indicate that the probable error

- In the table on page 220 ‘we see that g8 per cent of the cases lie within 3.45 P.E. of
the mean (40 per cent on-either side). o o
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of the obtained mean is 2, The standard error is rarely indicated
in this fashion.

While the student must become famitiar with the P.E.;; in order
to read the research literature in which it is employed, he is advised
in his own work to avoid unnecessary arithmetic by using only the
standadrd error.

. .
The Standard Errors of the Median, Q, and S.D. \

The standard error of amy statistical measure obiained fronp g & v
dom sample is the standard deviation of its sempling distributitn, that
1s, it Is the standard deviation of the distribution of suc]'.\ measures
obtained from a very large number of samples ,oij the given size.
Accordingly, the standard ervor of the median idtHe standard devi-
ation of a distribution of medians for a very\Jarge number of ran-
dom samples of the same size as the giyen éample. The formula
for the standard error of the median is as follows:

www.d braulibl'ary 6t'g in

est’d o, = 5. _"‘(_::-% =3, (10)

As the formula mdlca,tes;\ medians are somewhat less reliable than
the means of the san}e samples.

A complete dlscusswn of the logic underlying this formula and
of its use and mterpreta.tlon would paralle! exactly that already
given for the'standard error of the mean and could be derived from
the preceding discussions by simply substituting ““obtained me—
dlan” for “obtained mean” and “true median” for “true mean”

4 'Wherever these terms are found. TFormulas for computing approx-
fthate values of the standard errors of the standard deviation and
the semi-interquartile range of a sample are given below

787 (samﬂcl
o = 487 oy. 11)
e” VN -1 o7 u _ (
osp, (OF gg) = —Comiet _I__. Tsompte) oy ax. (12)
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Tf the samples involved are large and drawn at random from ap-
proximately normal populations, these formulas may for most
practical purposes be used and interpreted in essentially the same
fashion as Formulas (8) and (ro).

Tt will be noted that, once the standard error of the mean has
been computed for the sample, the approximate standard errors of
any other of these measures may be readily determined by simply\
multiplying by a constant.

The probable error of any measure may be found by multiplying
its standard error by .6745. O

In using Table 17 with any of these formulas it is @ssumed, of
course, that the sampling errors are normally distribisted, that is,
that similar measures from a large number of random samples of
the same size will form a normal distributi:p{\ »If the samples are
large, this assumption is likely to be sufficiently well satisfied even
though the population involved is notftermal. For small samples,
the assumption of normality ot thlagantilingr distyibution of the
standard deviation or of the segisimterquartile range is definitely
not satisfied, even though the population is normal. None of these
formulas, particularly Fggﬁulas (11) and (12), should be employed
with small samples (V<2 5)

An exact test for the significance of a difference between the
standard devia:Qohs' of small samples is available,* but is beyond
the scope ofthus course. '

The Séa’&'&rd Errors of Proportions and Percentuges
Very frequently we are interested in obtaining only a simple
(Statément of the proportion (decimal fraction) or percentage of
MWdividuals in a total population that belong to 2 specified cate-
gory. For example, we might wish to know the proportion or per
cent of left-handed children among all school children in the public
elementary schools of the country. To determine this proportion
or percentage, we might resort to random sampling. Because of
the part played by chance in determining which individuals are to
* See Lindaquist, Statistical Analysis in Educetional Research, pp. 60-66.
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constitute the sample, we could not expect the proportion of left-
handed children in our one sample to correspond exactly to the true
proportion in the entire population. If we continued drawing
other random samples of the same size, each sample would perhaps
contain a slightly different proportion of left-handed pupils than
any other. If the samples were large, these proportions (unless the
“true” proportion were near zero or 1) would fall into an approxi-
mately normal distribution, the standa.rd deviation of whlch would

be approximately
a_\/;; \/ (I_ v @)

in which represents the proportion in the given category in the
entire population (the *true” proportmn)\a};d g=1— p (gis the
true proportion in the rémaining catepories).

In practical situations, of course the true proportions are always

www . dbraulibr ar’

unknown. However, &f oT)served proportion for a
single random sample, we may ,test any exact hypothesis concern-
ing the true proportion by; subsntutmg the hypothetical true propor-
tion (not the observed proportion) for the p in the formula. The
result will be the #7ue\standard error of the observed proportion
under the hypothesis that is being tésted. Suppase, for instance,
that we have fotrd that 14 children in a sample of 100 (.14 of the
sample) are teft—handed and that we wish to test the hypothesis
that thek(r-ue proportion is .10. Under this hypothe51s the stand-
ard efror of the obta.med proportlon for a sample of 100 cases is

:\.
/RN

that is, .03 is the standard error of the obtained proportion éf the
true proportion is .1o. Our obtained proportion differs from the
hypothetical proportion by .04, which is only slightly more than
one standard érror. This dlscrepancy could be readily attributed .

to chance; hence, we are in no position to reject the hypothes;s
with any high degree of confidence. .
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‘The establishment of a confidence interval for the true per-
centage presents a more complex problem than the establishment
of a confidence interval for the true mean, Our estimate of the
standard error of the mean of a sample is based on the standard
deviation of the sample and is the same no matter what hypothesis
about the true mean we wish to test. The standard error of the
obtained proportion, however, depends upon the true proportiony,
and hence, we must use different values of the standard error totest
different hypotheses about the true proportion.  How this‘affects
the establishment of a confidence interval may best be clarified by
an example. : e\ 3

Suppose, in the illustrative situation just cepsidered, we tried
incorrectly to establish the 2 per cent confidence interval for the
true proportion by following a procedu’re\’suggested by that
described on page 10g. That is, suppose™ estimated ““the” stand-
ard error of the obtained proportion fo'be

14 X5 %,dbrauljbrary,opg,in
TR = 034

(substituting the obtai;aejéi proportion for the true proportion in the
formula), and then bg%éfbliahéd 14 (2.33 X .034) or .061 and .219
as the limits of thee per cent confidence interval. That these lim-
its are incorreet m,ay be readily demonstrated by testing each sep-
arately in tHe manner described in the last paragraph on the pre-
ceding.Q&gé. When this is done, we find that the hypothesis that
the‘tfx:xe proportion is .o61 may. be rejected at a level of confidence
faf beyond the 1 per cent level, rather than only at the 2 per cent
Jével. (Under the hypothesis that the true proportion is .061, the
standard error of the obtained proportion is .024. The discrep-
ancy of .14 — 001 = o079 is thus over 3.2 times the standard error
— a discrepancy which would occur much less than 1 per cent of
the time by chance alone.)- _ : o
On the other hand, the hypothesis that the true proportion is
© .219 may barely be rejected at the 1o per cent level, rather than at
the 2 per cent level of confidence. The limits 061 and .219 are
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thus incorrect because they were established by assuming that
“the" standard error of the obtained proportion was .034 regardless
of the hypothesis being tested, instead of recognizing that the
standard error to use depends on the hypothesis to be tested.
The establishment of an exact confidence interval for the true
proportion is a relatively involved process, but one which should
not be beyond the typical student in this course. We have alréady"
seen that to establish a certain confidence interval is the samé as'to
determine the “limiting” acceptable hypotheses correspénding to
the selected level of confidence. For instance, to establish the
2 per cent confidence interval for the true proportigrf, we must find
the highest and lowest hypothetical values of the) true proportion
which are “acceptable” each at the 2 per cenblevel. Since a dis-
crepancy {between observation and hypqtlﬁsis) of 2.33 standard
errors will occur 2 per cent of the timghy chance, we wish (in the
illustrative situation already used)’fco'khow for what values {X) of
the hypothetical "BHIE PRIBIISN TR 14)/0, equals + 2.33.
That is, we wish to know for what values of X the following
equality holds. o
&
X—-a¢ X~ .14
B JEe=1 s
7] 100

Accordingly, we must solve for X in the equation |

N
O\ # -
R :; X — .14 = =+ 2.33 M,
N\ 100

’ m;luch reduces to
10§.43 X* ~ 33.43 X + 1.06 = 0.

This involves the solution of a quadratic equation, for which the
student may need to refer to an elementary algebra text.r In this

* The roots of the equation 622 + bx + ¢ are givenbjthe formula:
- —b:i:‘\/b’—4ac
za T

£
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case the roots of the equation are .o77 and .239. These values, ac-
cordingly, are the exact limits of the 2 per cent confidence interval
for the true proportion, rather than .o61 and .219 as determined
by the inexact procedure earlier described. The procedure last
described, incidentally, is valid only for large samples.

It may be noted that when the obtained propertion is near .5, it
may be satisfactory for most practical purpeses to follow the Incors
rect but much simpler procedure described at the middle of pige
127, that is, to consider the standard error of the obtained\pro-
portion (secured by substituting the obtained proportion\ in the
formula) as the same for any hypothesis to be tested: ““This pro-
cedure may not be used, however, when the obtairied proportion
differs markedly from .s. N4

The formula for the standard error of zim{sbtajned percentage is

Q }y'w‘i%'ra ulibrary.org.in
in which X is the true percentage {or the hypothetical true per-
centage). The use of Formula (14) is similar to that of Formula
(13). R

The Standard Er.mfﬁf\ a Difference

One of thexdost important and most frequently used of all sam-
pling error/fdvmulas is that for the standard error of a difference.
A conskgi;hble proportion of all sampling studies involve a compari-
son b@ﬁreen measures obtained from random samples drawn from
eachiof two populations. For example, we might wish to compare
(1€ mean intelligence of rural school children with that of city
school children, or might wish to determine whether or not there
is any difference in variability (S.D.) in intelligence between the two
sexes, or might wish to find if there is any difference in the per-
centages of left-handed boys and left-handed girls of the same age.

The standard error of any obtained difference is the S.D. of a
distribution of such differences for a large number of pairs of ran-
dom samples independently drawn from the same populations.
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The general formula for the standard error of a difference (X — Y)
between uncorrelated measures is

dx-n=Vdx + 0y, (xs)

in which X and ¥ represent the two measures, and oy and oy
represent their standard errors. This formula, as applied to a dif-
ference between the means of two independent random samples;
becomes : O\

2N\

. R
3 2 N
On—u) =V Ty, + Oy, A (16)

7%
3

The standard error of a difference between any gther measures
derived from each of two independent random{ gamples could be
similarly found by substltutmg the sta.ndard\errors of each of the
measures in Formula (15). '\ ¢

The “ Significance” of a Dqﬁ' ey Testmg the Null Hypothesis

The use of the formu arfao g’ﬁ gtagﬁ ard error of a difference in-
volves essentially the sarne leglc as has already been explained in
connection with the stapdard error of the mean. However, in
interpreting differenceg we are less often concerned with establish-
ing confidence intervals and more often concerned with testing
certain exact hypGtheses. In particular, we are very often uniquely
interested inésting the hypethesis that the two populations
sampled aré Blike in the trait measured, or that the true difference
is zero, \Tl‘ns hypothesis (that the true difference is zero) is known
as thé “null” hypothesis.

When the null hypothesis may be rejected at a high level of con-
ﬁdence, we say that the difference is “statistically significant.”
Frequently, we qualify such statements, saying, for example, that
a difference is “significant at the 5 per cent level” (meaning that
the null hypothesis may be rejected at the 5 per cent level) or that
it is “significant at the 1 per cent level” (meaning that we are con-
fident at the 1 per cent level that the null hypothesis is false).
When we say that a difference is significant, we mean that it is too
large to be reasonably attributed to chance (sampling error) alone,
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and that we are highly confident (or “practically certain *?) that the
two populations differ in the trait measured: -
Suppose, for example, ihat we wish to determine by sampling
whether or not there is any difference in the mean weights of
1o-year-old hoys and 1o-year-old girls in the public schools of this
country. Suppose that we have selected a-random sample of 220
cases from the population of boys and of 145 cases from the popu-,
lation of girls,* that we have found the mean weight for the sample
of boys to be 77 pounds and that for the girls to bé 75 pounds; ‘and
that the standard deviation-of weights is 12 pounds for the’boys
and 13 pounds for the girls. . JEDA O Y
We now wish to know whether or not it is reasonable to suppose
that the difference of 2 pounds in the obtained.mreans: is due en-
tirely to chance, and that the frue diffefengg id meax weights is
.zero. We first compute the standard ersors'of the obtained means.
According to Formula (8), the standard error of the obtained
means for the boys 15 .8.p01mdﬁr’w1@ﬁ;§u% lig;rmtg?ngiﬂs is 1.08
pounds, Hence, according to Formula (16), the estimated stand-
ard error of the difference is ™ " ' o
_ ng—MG) = .V. 0'3;3 :i:{:t‘f_yﬂ == \f 84 ]:.C:i.ss = 1.3 (rounded). )
We may im;érprét this _\tanda.rd error in the same way that we have
previously intemfefed the other standard errors. In this case, our
rcasoning wodld be that it we continued drawing other random
samples ‘of_226 cases each from the population of boys and other
fandqn'i’ %mples of 145 cases each from the population of girls, and
,t_l}@«t\',ifwwe paired these samples at random and found the difference
{n)the means of each pair, these differences would fall into a normal
distribution, the S.D. of which would be. 1.3 pounds. .
Hence we know that if the true difierence Were zero, obtained
differences as large as that found (2 pounds} in this pair of samples
waould be exceeded approximately 12.33 per cent of the time.
* Qrdinarily, we would select samples of the same size from each population, but

different numbers are employed here to make the illugtration more. general.

" 2'87.66 per cent of thecasesina normal distributiox_l would lie mthm 2f13 = 154 a
of the mean (4383 per cent on either cide); hence, Too-— 87.66 = 12-33 per cens wouldf

differ from the mean by more than .54 &
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Accordingly, it is quite reasonable to suppose that the true differ-
ence 75 zero, and that our one pair of samples is one of the 12 pairs
of samples. in 100 that would then yield differences of at least 2
pounds. We would therefore say that our observed difference is
lacking in statistical significance, meaning that it does not signify
dependably that there is any difference in the means of the popu-
lations sampled. \

The ratio between an obtained difference and its estifiated
standard error is often referred to as the “significance ratip.’”” In
the preceding example, for instance, the significance\ratio was
1.54- To enable us to reject the null hypothesis atithe 5 per cent
level, the significance ratio must exceed 1.96; atthe 'z per cent level
it must exceed 2.33, etc. The “critical valus which the signifi-
cance ratio must exceed in order that we méy declare the difference
“significant”’ depends upon the level ¢f confidence that we choose
to employ, and this in turn depends ‘wpon our temperament and
other consideraﬁi%ﬂ’s‘?"dbfﬂiﬂgiﬁfgﬁgfgﬁjd psychological research
workers have in the past frequénitly followed the practice of requir-
ing that the significance ratio éxceed 3 before declaring a difference
significant, that is, theyBave insisted on a very high degree of
confidence (0.26 per\éénf: level) that the null hypothesis is false.
More recent practiee is to utilize the 1 per cent or 2 per cent levels,
with 2.58 and\433 as the corresponding “critical” values of the
significance ratio,

It should be noted that a statistically significant difference is not
necessatily a reliable difference. An obtained difference is said to
be reliable to the degree that it is likely to approximate the cor-

{résponding true difference; that is, the reliability of an obtained
difference is dependent only upon its standard error and is inde-
pendent of the magnitude of the obtained difference or of the ratio
between the difference and its standard error. A difference is said
to be statistically significant if it may not reasonably be accounted
for entirely in terms of chance fluctuations in random sampling.
Since the significance of a difference depends upon its significance
ratio, whether or not jt is significant depends doth upon its magi-
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tude and upon its standard error. This means that a difference
may be relatively unreliable (that is, have a large standard error),
and yet be “significant,” if the difference itself is sufficiently large.
Again, if the obtained difference is small, it may fail to be signifi-
cant even though it is very highly reliable, that is, even though its
standard error is extremely small. ' :
1t is also very important to note that the fact that an obtained,
difference is statistically significant indicates only that the obtained
difference is not entirely due to chance fluctuations in rgmcfom
sampling, but does not indicate what does account for the difference.
The failure to take this fact into consideration and the téndency to
provide only very superficial interpretations of obtained differ-
ences have been major sources of error in educational and psycho-
logical research. For example, in many “methods » experiments
(in which the relative effectiveness of two tacthods of instruction is
determined by employing the methods, simultaneously with two
. similar samples of pupils and compaﬁﬂglmﬂi%ﬂi’{%%gﬁﬂ-ﬁhievemmts
at the close of the period of instri;ction) the investigator has made
the mistake of concluding, simply because the obtained difference
in achievement was “sigiificant,” that he had therefore definitely
established the superiority of one method over the other. Even
though the samples, used may have been strictly random and all
of the conditiong’lor the application of the standard error formula
 satisfied, the,possibility remains that uncontrolled factors other
than thedifference between the two methods may be the real reason
for thef&\lﬁerence obtained, as, for example, differences in the ability
},{f:thé teachers employing the methods or differences in the con-
{temporaneous incidental learning of the pupils in other subjects.
Similar difficulties arise in the interpretation of “gigmificant differ-
ns. The student of statistics should

ences” in many other situatio
consciously strive to develop a highly critical attitude in the con-

sideration of possible cause and effect relationships in such situa-
tions. '
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The Siandard Error of a Difference between the Means of Related
Variables :
The derivation of Formula (16) involves the important assump-
tion that the samples between which the difference is found are
independent random samples. In some instances the samples which
we wish to compare may consist of individuals who may be paired
(between samples) on some basis, and the measures obtained méy
be related for the.individuals constituting these pairs. Suppose,
for example, that we wish to compare the mean intel]igenc&'o}' mar-
ried men with that of their wives. Suppose we seleck 2 Tandom
sample from the population of married men, and ‘that our sample
from the population of married women consis,ts?of the wives of
these same men. Then suppose that we admihister an intelligence
test to these individuals, compute the meg.n%éore for each sample,
and find the difference in these means¢~In this type of situation
Formula (16) is not valid to describe the reliability of the difference
and if used wonld ExagFAIE SRR A bility. :
The reason for this is that tpefé is a definite relationship between
the intelligence. of hushands'and wives. Men of superior intelli-
gence tend to be married\6 women of superior intelligence, and
men of low inteliige,{?.fend to marry women of low intelligence.
Hence, if our sample ‘of married men hdppened by chance to have
a higher.mea.n; i{lieﬂigence than most such samples, we would ex-
pect our re]g‘r@d sample of women also to have a higher mean intel-
Tigence than‘most such samples of women. Two samples selected
in this f2 ion would ordinarily be more nearly alike in mean intel-
Iigq:gqé than if the samples were independently selected, that is, if
Jthesvomen in the sample of women were not (except by chance in
afew cases) the wives of the particular men selected. In a pair of
‘ndependent samples, the obtained mean of the men might be above
the true mean of men at the same time that the obtained mean of
the women was below the true mean of the women, but in a pair of
related samples this would happen much less frequently. A dis-
tribution of differences in means of related samples would therefore
show less variability than a distribution of differences in means of
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independent samples. In other words, the standard error of the
difference for a pair of related samples would be smaller than for a
pair of independent samples — how much smaller would depend
upon the strength of the relationship. -The formula for the stand-
ard error of the difierence between means of related variables is
as follows: : o

Tty = Vi, + Oat, — 2100 Txy - Gl
in which o, and o, are thestandard errors of means M and My, ahd
7y is the coefficient of correlation between the related varidbles.

It will be noted that if 7 is o, that is, if the \_r;,ria,b_legére unre-
lated, Formula (17) becomes the same as Formula (z6):
~ If 1, is not known, and if the sample is not verydarge, it may be
more convenient to compute the difference for bich pair of meas-
iires separately and to estimate the standarderror of the mean of
these differences (which is the same as the. difference in means) by
substituting the standard 'deviagc‘)%lws‘)é gpaeu}?gigd%?l f:ilj]ffi:;ences m
Formula (8), the N in the formula. representing the fiumber of dif-
ferences (or pairs of measures)is Suppose, for example, that each
individual in a sample of 21 weighed before and after going on a
certain standard diet, afid we wish to know whether the observed

gain (or loss) in meap\%'ght is significant. Suppose the initial (7)

and final (F) weight8, and the corresponding differences (D), are
R : : : .

as follows: ) o | .
L. \F D. i F D. I F. D

I. 142"’\ 146 4 IL. 147 I47 o 21. 146 145 —1
2-;1146' 139 —1 12 I34 164 22, 131 128 =3
33143 148 5 13, 106 108 23. 137 161 4
4 158 16t 314 156 105 24. 165 - 167 - 2
5. 149 151 2 15 172 170 25. 153 154 I
6.
7
8.
0.

=
o

140 138 —2 16 121 IT7 26. 1% 178 —2
134 - I35 1 .17, 137 159 . 29, 50§ 112 7
124 127 3 18 156 1063 28. 154 153 — 1
116 115 —1 19. 149 152 20. 126 124 —2
10. 157 162, 5 20. 140. 142 3o 122 ¥2I < 1

. 1
B o=y 0 P D W
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‘The mean of these differences is 1.93, and their standard deviation
is 3.45. Hence, the estimated standard error of the mean differ-
ence is 3.45/V'29 = .65, and the significance ratio is 1.93/.65
= 2.96. Since this is considerably larger than the significance
ratio (2.58) required for significance at the 1 per cent level, we can
reject the null hypothesis in this case with a very high degree of
confidence, R '

In simple experiments intended to determine the relative.gffec-
tiveness of two methods of instruction, the usual prastice is to
select two samples of pupils from the same populatiofi, to teach one
group by one method and the other by the other miethod for a given
period of time, and then to administer the same achievement test
to both groups and to find the difference in their mean scores on this
final test. If the samples are independernitly selected at random,
Formula (16) may be employed to detérmine the reliability or sig-
nificance of this difference. Veryeften, however, instead of select-
ing the samples iﬁ“c‘[‘é‘ﬁé%&gﬂﬁb?%’?‘%ﬂch” or “equate’” them on
some basis (for example, intelligence) at the beginning of the exper-
iment. In other words®ach pupil in one group is paired with a
pupil of the same inte€lligence in the other group, so as to give to
neither method a.p\aécidental advantage in the final comparison.
In’this case again.Formula (16) is not strictly valid, since the sam-
ples used arefiot independent. ‘The special techniques appropriate
for testipg‘?he significance of the results of experiments of the
“mat?l\@d group” type and of other more complex types of
experiments are not within the scope of this introductory
) "ng‘}ISE.I

Swmall Sample Theory: Establishing a Confidence Interval for the
True Mean :

Tt will be remembered that in establishing a confidence inter-
val for the true mean the procedure (for large samples) is to: (x) es-
timate the standard error of the obtained mean, using Formula (8);
(2) multiply the estimated standard error by the “critical value”

* See Lindquist, Statistical Analysis in Educotional Research, especially chap. IV.
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(ior the selected level of confidence) of the significance ratio; * and
(3) “lay ofi” this distance on either side of the obtained mean to
determine the limits of the confidence interval. ‘The “critical
value” of the significance ratio, as determined from the normal
probability integral table, is 1.28 for the 20 per cent level of con-
fidence, and 1.96, 2.33, 2.58, and 3.33 for the § per cent, 2 pet cent,
1 per cent, and o.1 per cent levels respectively. )
This procedure is based on the assumption that the significasicg
ratios are normally distributed for a large number of samples of the
given size — an assumption which is not valid if the saffple”is
small. For small samples the significance ratios forma‘distribu-
tion that has longer tails than the normal distribyfion, and the
form of distribution differs from one size of saraple to amother.
Hence the “critical values” derived from the uptmal table are not
applicable to significance ratios computed forsmall samples. How-
ever, the exact form of the distributien-of significance ratios is
known for each size of sample, a;g@&hgl%{ﬁfﬁr;%ig%a} values” for
each of the commonly used Jevels, of confidence have been deter-
mined for each size of sampleffi‘oin 2 to 31. 'These critical values
are given in Table ITT in t%e Appendix. For reasons that need not
be considered here,” © & Iess than the size of the sample (N —1)is
referred to as the pumber of “degrees of freedom.” The numbers
in the first colugni-in Table II1 represent the degrees of freedom
for various size’samples, that is, they are equal to N -1
To show How this table may be used, suppose that the mean and
S.D. of & sample of 10 cases are 11.00 and 3.60 respectively. Ac-
cording to Formula (8), the estimated standard exTor of the mean
3160/ 70 — 1 = 1.20. According t0 Table TII, the critical
Value of the significance ratio () at the 1 per cent level fora sample
of 1o cases (degrees of freedom = N—1=09) is 3.250 Hence

1 We have heretofore used “significance ratio” to refer to an obtained difference
divided by its standard error; We Tere use the term to refer similarly to the ratio of the
difference between the hypotheticat and obtained means to the estimated 8

error of the obtained mean.
2 Students desiring a more thorough explanation of small sample theory may refer
iossal Research, pp. 18-21 and 48-73-

to Lindquist, Stekisticel Analysis in Educational
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the limits of the = 'per cent confidence interval are (11.00 — 3.250
% 1.20) and {(¥1.00 + 3.250 X 1.20) or 7.1 and 14.9.

-The manner in which any exact hypothesis concerning the t:rue
mean may be tested (for small samples) by the aid of Table TII
should be apparent fror the foregomg and from the discussion on
pages I10-115.

. . ’\
Small S ample Theory: The Szgmﬁcame of o Difference in M pans of
- Independent Samples :

* The procedure for testing the significance of a di:‘:‘fe,ijg:n’ce in the
means of independent random samples is similar forJarge and small
samples, éxcept that in the latter case the signifigarice ratio is differ-
ently calculated, and the:critical value of the\significance ratio is
read from Table III rather than from Tab@iq. The formula for
the significance ratio (£) for the differen€sn the means of two inde-
pcndent small random samples is , | ’

* www.dbraulibrar i{y ovgj;
$= ’ - (18)
J Nlo-l'{‘Nﬂﬂ'g Ni+ N
N N1+N2—2 N2 B
in which M, a.nd E{;\are the obtained means, o, and oz the cor-

responding standard deviations, and ¥; and N, the corresponding

numbers of €a86s™ The number of degrees of freedom for this #
is (N, + Nox~2). : :

Foerample, if a random sample of 5 cases from populatlon A

"N

z Thg denonuna.tor of this ‘expression is the estimated standard error of the differ-
etteg; under the hypothesis that both samples are drawn at random from the seme
population. - We may see now an advantage of defining the level of confidence with
which an exact hypothesis may be rejected in terms which do not consider the direc-
tion of the hypothefical’ sa.mphng error. It the null hypothesis és true, then the two
populations are édensical in the trait measured, that is, they constitute a single popula:
tion as far as that trait is concerned. Under the null hypothesis, therefore, the two
samples involved aze really drawn at random from the seme population. Now if two
samples drawn at random from the same population have differedt means, there i
obviously no basis for saying thit the differencé in means is either positive ot negative.
"Wé can say that the différence has a certain smagnitide, but wé canhot meaningfully
attribute a definite direciion to it. Accordingly, the second of the definitions given
in the footnote on page 112 is inappropriate in testmg the null hypothesis, since under

" that hypothesis the direction of the sampling error is indeterminate. -
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hag a mean of 19.50and 2 standard deviation of 2.65,and a sample
of 11 cases from population B has a mean of 15.13 and a standard
deviation of 3.20, then the significance ratio is

- 19.50 — 15.13 _ 437 _ 2.4
\[ 5 X 2.65> + 11 X 3.202) (5 +1r V 3.0701
s+ 1r—2 55

The number of “degrees of freedom” for thistis Ny + Nz — 2 = I
According to Table ITL, for this number of degrees of freedor. dinf
2.624 is required for significance at the 2 per cent level, ot & 145
at the g per cent level. Hence this difference would be described
as significant at the 5 per cent level. R4

1t is important io note that the procedure just Jescribed is valid
only if the irue standard deviations of the pop:%la‘tions involved are
approximately equal. -1f the obtained reshlts or other considera-
tions suggest that this assumption. Is nobsatisfied, this formula for
¢is not valid. Tt should be noted; hidievenpthaf chanse alone will
produce large difierences in the obfained standard deviations. For
the samples in the illustration" Just used, for instance, one standard
deviation might easily be(twice the other as the result of chance,
even though the trug standard deviations were equal.

The significance’of 2 difference in the means of paired or related
the manner illusirated in the example

measures mayybe tested in
onpage 135¢pxcept that for small samples the “ critical”” values of

the Sigrg'r&\tafﬁce ratio should be read from Table IIL.

Qinﬁiéiions of Sampling Error Techniques Designed for Large

) " Random Samples
: hniques that have been presented in this

The sampling error tec .
chapter are designed for use only with simple random samples (in

most cases only for samples of considerable size). However, most
samples actually employed in educational and psychological re-

search are mof simple random samples, and to apply to them the

techniques here presented would often be more misleading than
helpful, It is therefore extremely important that the student un-
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derstand clearly what is meant by a random sample, and that he be
able to identify any consequential departure from randomness in
practical sampling situations.

A simple random sample of ¥ cases is one so drawn that any set
of N particular individuals is just as likely to be selected as any
other set. For instance, if a sample of 100 cases from the popula-
tion of ninth grade pupils in Towa public schools is to be truly ran
dom, it must be drawn so that any combination of 100 pa;rtmula.r
high-school freshmen has as good a chance to be selected ds any
other particular combination. When we stress the fact that'“any
combination” includes samples consisting of roo pupils from as
many different schools which may be located in thedmost inacces-
sible sections of the state, we realize how Jmpra.cticable is strictly
random sampling in situations of this kind, .\

In most sampling from populations of séhool children, the pupils
must be taken in dwbech gravs: §a§;hﬁrghhan independently as indi-
viduals, as would be required in snnple random sampling. One of
these intact groups may consist ofithe pupils in a single classroom,
or in a single building, or in-dsingle school system, or of the chil-
dren in a given communijtyyetc. Sampling by such intact groups
is necessary in part & avoid the inconvenient geographical dis-
tribution of pupils, tHat was suggested in the preceding illustration,
and also because the things to be investigated or experimented
with, such a3 methods of instruction or educational tests, must usu-
ally be ademstered simultaneously to groups of pupils rather than
to sep{rﬁte individuals. Thus, if an educational research worker
wanted to conduct an experiment involving goo pupils, he would
nro\bably arrange with a number of school administrators to permit
Him to use whatever number of infact classes would total goo pupils,
instead of attempting to select 500 pupils strictly at random from
the population in which he is interested. These classes would
differ from one another in ability and achievement much more than
would random samples of the same size, due to systematic differ-
ences in quality of instruction, previous educational experience,
nature of community, etc. It is readily apparent that a sample
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consisting of a small number of such intact groups (regardless of
the number of pupils) cannot yield as reliable results as a simple
random sample of the same size. It is very obvious, for instance,
that rooo pupils taken soo from each of two school systems is much
less likely to be representative of pupils in general than a simple
random sample of toco cases in which the pupils would be drawn
from hundreds of school systems. Consequently, it would be a
serious mistake to apply Formula (8) to the mean of the first af™
these samples (letting N = 1000), since the standard error¢thus
estimated would suggest that the mean is much more reliable than
is actually the case. A\

There are available * special sampling error technighes’ that are
valid for use with samples consisting of intact groups, if these in-
tact groups are selected at random, but th.e§e;t6chniques are be-
yond the scope of this introductory coursé.’¢ owever, it is impor-
tant that the student know that appropriate techniques are avail-
able, and that he recognize tﬂﬁ‘tjﬁﬁéi’mdlbﬁquemhﬁre presented
should not be used with samples of this type.

Tt has already been suggested that in actual research the choice
of the method of sampling to be employed is often governed by
factors of expediency orf administrative convenience. In actual
practice we usually“secure our sample from the relatively small
part of the wholg population that is conveniently accessible to us,
and there is always the possibility that the more accessible individ-
uals might @iffer systematically from the less accessible. As a
I‘esult,;ﬁie“ samples which we select, often without our being con-
sciopéi;of the fact, are frequently «loaded” (to an extent greater

) ~tKah would happen in random sampling) with individuals who are
stiperior or inferior to the typical individual in the population that
we are studying. '

Whenever a sample is selected by 2 method that in the long run
would yield samples whose obtained measures differ_ systematically
from the corresponding true measures, we say that the sample
drawn is a biosed sample. In other words, a sample is biased if

1 See Lindquist, Staistical Analysis it [Educationdl Researck, pp. 66 ff.
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other samples drawn in the same manner contain sampling errors
that are more often in one direction than in the other. Again, a
sample may be said to be biased if drawn by a process which gives
certain individuals {or individuals of a certain type) a better chance
of being drawn than certain other individuals. Unfortunately, the
sources of bias are frequently difficult to detect, and samples may
be seriously biased without our being conscious of the fact. ~\

Obviously, errors in sampling that are due to bias, that isathat
are due to failure to obtain a random sample, are not takeminto
consideration by the formulas that have here been_eonsidered.
Such errors, nevertheless, are among the most impérfé.nt of the
errors which characterize actual sampling studies»f

Sometimes, in order to reduce the probability ot S;ecuring a biased
sample, we select what may be described as a“controlled ”’ sample.
For instance, if we were studying the achievement of high-school
freshmen in the stafe of, Towa in. aﬁ%@‘;}ﬁbd subject and recognized
that there are systematic differendes in average achievement be-
tween large and small schools;We might insure — by deliberate
selection — that the proportion of pupils from schools in various
enrollment classificationgis the same in our sample as in the whole
population. In othergwords, we might #ake our sample representa-
tive with respect pe size of school, rather than allow chance to de-
termine whatpgéportion of pupils will be selected from schools of
each enrollment classification.

It is the controlled type of sample, incidentally, that has made
possible dependable polls of public opinion of the type conducted
b}r.gaﬂup, Roper, and others, Samples that have been properly

{*gontrolled” are considerably more reliable than random samples
of the same size, and hence the techniques that have been presented
in this chapter are not valid for use with such samples.

So much emphasis has here been placed upon the limitations of
sz.lmpling error techniques designed for simple random samples (due
either to the impracticability or the undesirability of random
sampling) that the student may wonder if the time he has taken to
become acquainted with these techniques was well spent. He
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need, however, have no doubts on this score. In the first place, he
will find some actual research situations in which these techniques
are directly applicable. In the second place, while it is true that in
practical research the methods of sampling and the experimental
designs employed are usually of a relatively complex type that de-
mand special sampling error techniques, these special techniques
cannot possibly be understood until the student has first mastered
thoroughly the simpler and more basic techniques designed foi "
simple random samples. Any student who intends to engagé &x-
tensively in educational or psychological research must adgire a
more advanced statistical training than is provided in this ‘course,
and one of the principal purposes of this chapter %ag’:b‘een to pro-
vide him with the foundation essential to such ddvanced training,
K7 \d
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CHAPTER IX

STANDARD MEASURES AND METHODS OF
COMBINING TEST SCORES

Standard Measures or z-Scores _
ATTENTION has alveady been drawn (Chapter IV) to the fact
 that raw scores on educational and psychological tests ordin\é.ﬁlf
have little or no absolute significance and may not be directly
compared from test to test. ‘To interpret or compare siich scores,
we must first derive for each, of them some measure of"its relative
position in the distribution to which it belongs. Oite of the most
widely used of such derived measures is the perbehtile rank. The
percentile rank, however, has several distjn}t’limitations. Ttis a
“counting” measure only, that is, it is rigbarithmetic in character.
It. may be unduly influenced bywmﬂhranmgd@n&%slm the form
of the distribution, and is therefqrp’i'élatiirely unstable or unreliable.
The inter-percentile distance.fluctuates in magnitude throughout
the scale, and may therefofe'not be considered as a unit. While,
for administrative co v?énfence, peréentile ranks are frequently
added or averaged(te secure composite measures, this practice
ignores the nonafithmetic character of the percentile rank and is
not strictly Va,]id” '

ADOthei\:dEﬁwd_ measure, which is relatively free from the
UMitatiQils\ just mentioned, is the standard measure or 3-56or¢.
Th?:z“éti)re is algebraically defined by the formula
Voo . x-M |

£=7§D. (19
in which g is the standard measure, X is 4 particular raw score mn
a given distribution, and M and S.D. the mean and standard

deviation, respectively, of that distribution. The z-score corre-

sponding to any given"ra,w geore indicates how many'standard

deviations that score deviates from
If, for example, the mean score on a test is 75 an

the mean of the distribution.
d the standard
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deviation is 1o for a given group, then for that group the stand-
ard measure or z-score corresponding to a raw score of 100 is
100 — 7§
- 10
Likewise, a raw score of 6o in this distribution would have a z-
score equivalent of —1.5. The zscore of 2.5 means that the
corresponding raw score is 2.5 5.D.s above the mean ; thé z
score of — 1.5 means that the corresponding raw score, Hies' 1.5
3.D.’s below the mean — the minus sign indicating that the Score
lies below, rather than above, the mean. A\ )

The use of the z-score does not involve any neceséary assumption
concerning the form of the distribution, but beeduse of the definite
relationship between the standard deviatiom and the normal
curve {Chapter VII), the z-score may bé’miost readily and ade-
quately interpreted if the distribution\goricerned is approximately
normal. If, for instance; a certain rAw score has a z-score equiva-
lent of + 2.0 inwa”ﬂSB}‘faEi“é’féﬁ%%%}T, we know (Table 17) that
it exceeds approximately o8 pei'f cent of the scores in the distribu-
tion. Similarly, a z-scorg of — 1.0 exceeds about 16 per cent of

z = 2.5

the measures. The vahie with which we enter Table 1%, ;; is of

course itself a z-sch\, since # represents X — M, the deviation of
the raw score f{dm the mean,

For dist}‘iQu_tions which do not approximate the form of the
normal cumye, the z-score is somewhat more dificult to interpret-
In a,d&fibution markedly skewed to the right, for instance, a
cop\:ﬁﬂerable proportion of the scores might lie above the point

owhich is 3 $.D.’s from the mean, while in a distribution markedly
skewed to the Ieft a point 3 S.D.’s above the mean might be con-
siderably higher than the highest score in the distribution. For-
tunately, however, distributions of test scores are rarely wvery
markedly skewed, and hence z-scores above + 2.0 may, in general,
safely be considered as “very high,” those between + 1.0 and
+ 2.0 as “high,” those between — 1.0 and — 2.0 as “low,” and

those below — 2.0 as “very low” relative 1o the other scores in the
same distribution.,
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Transforming Row Scores into Their z-Score Equivalents

When we transform a set of obtained scores into their z-score
equivalents, we are in effect arbitrarily substituting another scale
for the original raw score scale, such that the zero point on the new
scale corresponds to the mean on the raw score scale, and such that
the unmit along the new scale is equal to the standard deviation of
the original distribution. The arbitrary nature of this procedure
may be made clear by the following. = Suppose that along the
raw score scale for a given frequency distribution we have rodrked
the positions of the mean. and of a-point 1 5.D. above the mean.
Suppose, also, that on a wide rubber band we have(matked off
in white ink a number. of equally spaced pointsy bave written
zero opposite one of these points (near the middle of the band),
and have numbered the remaining points consecutively + 1, + 2,
+ 3, ete., and — 1, — 2 and — 3, OD either side of this zero point.
If we then placed this rubber band alongside the original raw
score scale and stretched and ¥ yadbald danseily they zero point: on
the band came opposite the mean,on the 1aw score scale and the
point + 1 on the band camesbj)pbsite the point 1 8.D. above the

mean on the raw score seale, the scale on the rubber band would

then represent the z- ote scale for the distribution involved.
When all of the, stores in'a large distribution are to be trans-
formed into z-scoves, it may ‘be more economical to prepare an
eguimleme-tc{ble-than to apply Formula (rg) to each score indi-
vidually, ("Fhe steps in preparing a table of z-score equivalents
for the(taw scores in a given distribution are presented below, the
StQQélf[ents in parentheses referring to the illustration in Table 9.
¢\¥. Compute the M and $.D. of the distribution. '_
(The M and 1. of the distribution in Table 19 are 40.16
and 5.136 respectively).
2. List, in a column or columns,
in the distribution. -~ =
(This has been done in the columns headed X in Table 19.)
3. Find the integral score just above the mean, and compute
its z-score equivalent by Formula (19)-. . R

the values of all possible scores
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(In Table 19, the score Just above the mean is 41. Tts -

score equivalent is 3~ 4210 _ 176.)

5.136

- Find the reciprocal of the standard deviation of the dis-

tribution. This is the difference hetween the Z-SCOreS corre-
sponding to two consecutive integral raw scores.

1 N\
: 5.136 '195) <O
Add this reciprocal to the result of Step 3 to get(the z-score
corresponding to the next highest integral scoge:\ ‘By similar
consecutive additions of this reciprocal, coripute the z-score
equivalents of the remaining raw scoreS\above the mean,
entering each (in the z colurnn) Opposite the corresponding
Taw score as it is obtained. D '
(x76 + -195 = .371, the z-500re’ é()}responding to 42;
-371 + .195 = .566, the z~soo1:§cdrresponding to 43; etc.)

: .Detemhe%w-é@wﬂébééfﬁégﬁ%ﬁﬁing to the raw score just

below the mean, and compute the z-scores for the remaining

Taw scores by conseciitive additions of the reciprocal as ex-

plained above. {mg

Tarpre 19

'\ o
ItusteaTmvG THE, (%Nsmucnon OF A TABLE oF z-Scoxz EqQuivaiEnTs

FOR THE SCORES ¥ A Given DisTrRiBUTION

A

Frequency })i{tﬁbution z-Score Equivalents of Raw Scores
Interval/ )y
Midp{iufs“ J X z X z X z
N
..54\ 1 36 3101 46 I.x51 36 — .%o
s ) 55 2.go6 45 -956 35 — .gos
7N 48 3 54 2.711 44 561 34 —1.1o
N 8 53 2.516 43 566 33 —r.385
} 42 17 82 2.32r .42 . 371 32 — 1.580
39 13 Y 2,126 4y 176 3T —1.775
36 10 30 I.g3x 40 — o192 30 -— 1.g970
33 4 40 1.736 39 — 213 20 — 2.163
3o b 48 1,541 38 — 410 (28— 2,360
27 2 47 1.346 37 — 6os 27 -~ 2.555
26 — 2.950
N = 6o 25 — 2,045
AM. = 40.10 24 —3.140
5D. = 5.136
1/8.D, = 105
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The z-score corresponding to any given raw score can now be
quickly read from the table; for example, the z-score equivalent
of a raw score of 30 is — 1.970 Of — 2.0 (rounded), while that for
a aw score of 53 is +2.5. If an adding machine is available,
Steps 5 and 6 in the procedure just described can be very quickly
completed. The standard deviation and its reciprocal should be
carried to three decimal places to avoid a large cumulative errors,
at the extremes of the distribution, but in reading z-scores fromythe
table it is usually well to round to one decimal place. O '
T-Scores . K7,

Tt has been noted that the z-score scale is an~orbiirary scale
adjusted to fit the raw score scale in a prescribéd'manner. If we
wished, we could select any other reference pouit and any fraction
or multiple of the $.D. as a unit in odMSbructing this scale. To
return to the rubber band illustrq.tién,’ we could, for example,
divide the band into 10 equalvinténvhis,nprabgring them. 10, 20,
30, etc., up to 100, and then oould adjust the rubber band to the
raw score scale such that the point 5o would come opposite the
mean of the distributiomand the point 60 would come opposite
the point 1 S.D. ahove'the mean of the original distribution. In
other words, we could arbitrarily set the mean of our new scale

equal to 5o and the standard deviation equal to 1o. This par-
ticular type of scale is ordinarily known as a T-scale, and scores
eXPressgg\'a:l&mg this scale as T-scores. The algebraic formula for
a T;spbre, then, would be: 0
O ' 10 (X —

' -—5p. 1 %° - @
where X, M, and 5.D. have the same significance as in the z-
score formula. 'The name “T-scale” was originally applied to this

scale by McCall: The advantage of the T-scale lies in the fact

that it does away with the necessity of deahng with negative scores
1 values. In all other respects,

and with scores expressed as decima
however, the z-score and the T-score are essentially equivalent,

t William McCall, How io Measure in Educotion. .
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Raw scores may be transformed into T-scores by the same type
of procedure as has just been explained for z-scores.

Composite Measures . .

T-scores and z-scores and other measures based upon the mean
and standard deviation are very frequently employed for the pur-
Pose of deriving composite measures based upon a numbef ‘of
scores originally expressed in different umits. If we attempt to
secure composites of performance on different tests for iHe in-
dividuals of a given group by simply averaging dizettly the raw
scores of each individual, we automatically givesto-the score on
each test a weight which is proportional to the variability (sigma)
of the distribution of scores on that test. Suppose, for example,
that on two tests, A and B, admjnisteged\\ro a given group, the
means and standard deviations are asgiven below.

W W Scores of
wwipdbraulibrgrygorg i "Pupil #1 Pupil #2
Test A - 120 o33 135 103
Test B 85 ‘::'25 6o . IIO

Suppose that pupil number 1 makes a score 1 S.D. above the mean
on Test A and i {) "below the mean on Test B, while pupil
number 2 makegha score 1 5.D. below the mean on Test A and
1 5.D. above,théhean on Test B. The sum of the scores on the
two tests wenld be 195 for pupil number r and 21 5 for pupil num-
ber 2. \Rpil number 2 would then receive the higher composite
score §imply because the test on which he happened to perform
thexbeétter was that with the larger standard deviation, whereas if
(the'tests were to be considered as equally important both composites
should be the same. Scores on Test B, then, are given greater
weight in the composite, even though their mean value (8s) is
less than that of the scores on Test A. A long test, or one with a
large number of items, does not necessarily carry any greater
weight in a composite than a short test, or one with just a few
scoring units, since the shorter test may have. the larger 8.D. of
scores. 'Therefore, to insure that each test is given the same weight
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in the composite, the scores on all tests should be transfoimed so
that each distribution of transformed scores shows the same stand-
ard deviation. This, of course, is done when all scores are trans-
formed into z-scores or T-scores. Where z-scores from different
tests are added or averaged to secure a composite, each test is
given the same weight, If it is desired to weigh certain tests
more than others, this can be done by multiplying the Z-300TeS,
for those tests by any desired number before the scores are come
bined. SR o <\)
Sometimes, when the scores from 2 number of tests.are’ to be
combined for the individuals in a given group to obtain measures
of composite performance, and when. it is desired %o give each
test equal weight, it may be more convenient toumultiply the raw
scores on each test by an integral numbepswitich is roughly pro-
portional to the reciprocal of the 5.D. op.i,slmt test, and then com-
bine the scores thus derived for eac!i.ﬁxdividual. Suppose, for
example, that for a given groupwt‘ﬁgﬁilﬁff'ﬂ)lﬁféﬁﬁ 8f Bédres on three,
tests, A, B, and C, show $.D.’s 312, 21 and g Tespectively. The

. ’ ST 1 T
reciprocals of these 8.D sare —— = 083, — = 047, and - = .11
o\ 12 21 9

respectively. The s{skall’est integral numbers closely proportional
to these values are\8, 5 and I1. However, the integers 2, T, and
3 are roughly roportional to these reciprocals, and would be
sufficiently/accurate for most practical purposes. If, then, all
scores om. Test A were multiplied by 2, the S.D. of the scores
thus detived would be 2 X 12 OF 24 Similarly, if each of the
) ,Sféoiéf‘;oon Test C were multiptied by 3, the S.D. of the derived
{seores would be 27. These 5.D.’s are s0 nearly equal to the
S.D. of the original raw scores on Test B (21) that a fairly satis-
factory composite could be secured by adding to the B scores fhe
derived scores for Tests A and C.  (If a more equitable weighting

were desired, all of the scores on Test A should be multiplied by

8, all scores on Test B by 5, and all scores on Test C by 11, which
would result in $.D.’s of 96, 103, and 99 respectively.)'
The conditions under which, and the purposes for which, z-scores
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and T-scores and other similar derived scores may be validly
applied are left to the student to discover for himself with the aid
of the suggestions offered in the study exercises. It is particularly
important that the student become thoroughly familiar with the
z-score technique, not only because of its frequent application in
practical work, but more especially because a thorough u.nde”l<
standing of z-scores will lead to a better appreciation of other
statistical techniques. A thorough understanding of z-sebres is
particularly essential in the study of simple correlation theory in
the following chapter. \
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CHAPTER X
CORRELATION THEORY

The Meaning of Correlation

WHEN measures of each of two traits are secured for each in-
dividual in a given group, it may frequently be noted that the
two measures for any individual tend to have roughly the game
relative position in their respective distributions; that is, indgvidﬁals
far above average in one trait tend also to be well above average
in the other, those below average in one tend to be cotfespondingly
below average in the other, and those at or near the average in
one tend also to be at or near the average in.t]{f;other. When. this
s true, we say that the two traits (or rq,{as\ures) are “positively
related”” for the group in question, or that they show a “positive
correlation.” Height and wﬁ&%ﬁ%@]&ﬁﬁpl@g%m positively
related for almost any group; that is, the tall individuals tend
also to be the heavy and the ghort individuals to be the light.

Sometimes traits may be sound such that measures of these
traits for the individual§ i a given group are “negatively related.”
By this we mean plﬁ?i}ldividuals ahove average in one tend to
be below average in the other, while those below average in the
first tend to. be above average in the second. For the children

in the sewveath grade in almost any public elementary school,

for e Ie, chronological age and scholastic ability are likely to
age children in the grade

be ;{éghtively related; that is, the over- .
(are-usually among the dullest, while the youngest children are
#$ually among the brightest. “The reason is that the dull children

have been retarded and the bright children accelerated in their

school progress.

The nature of the relationship between two variables can be
most readily studied by one not technically trained in statistics

by preparing a «gentter-diagram” for the measures obtained.

Suppose, for example, that we wish to study the nature of the re-
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lationship between the scores on an arithmetic test and on a read-
ing test for a given group of seventh grade pupils. To do this
graphically, we could subdivide a square or rectangle into a large
number of “cells” by drawing equally spaced and parallel horizontal
and vertical lines through it as in Figure 6. Each horizontal row
of cells could then be made to correspond to a given interval aloxk'g
the scale of arithmetic scores, and each vertical column tovan
interval along the scale of reading scores. For exampfe in
Figure 16 the upper row represents the interval 43—47~a.10ng the
arithmetic scale, while the third column represents the interval
30-39 on the reading test scale. The scores ofiany pupil could
then be represented on this diagram by a singlevtally mark placed
so that its position with reference to the yertical scale represents
his arithmetic score and so that its position with reference to the
horizontal scale represents his readifigscore. For example, if a
pupil made a scarg-ofag6.onbhe pethmetic and 63 on the reading
test, we would place the tallyymark for him in the cell which is
both in the 33-37 row and in'the 60-6g column, that is, in the sixth
cell (from the Ieft) in thethird row (from the top).

The tally marks in( F\fgure 16 represent the reading and arith-
metic test scores f\s a group of 62 pupils. Each number along
the bottom of the figure représents the total frequency in the
column abov@)it, while the numbers along the right-hand margin
represent-the frequencies in the individual rows. For example,
14 pupils tnade scores of 40-49 on the reading test, while 12 pupils
ma,de scores of 23-27 in arithmetic.

P (For the pupils tallied in any single column we could, if we Wlshed
uompute the mean score made by them on the arithmetic test.
For example, the 5 pupils tallied in the first column (who made
scores of from 10 to 19 on the reading test) made a mean score of
19 on the arithmetic test (computed by using as the arithmetic
score of each pupil the midpoint of the arithmetic interval in which
he is tallied). The position of this mean along the vertical scale
is represented by the small circle in the first column. : Similarly,
the circle in ¢ach of the other columns represents the value of the
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It ig at once apparent that these means tend to fall along a
Si\i‘a.lﬁht line Tunning from the lower feft-hand to the upper right-

“hahd corner of the diagram. It is probable that the only reason.
" that they do not lie exactly on 2 straight line is that each mean is
based upon such a very -mall number of cases and is therefore
unstable because of sampling exror: fad enough pupils bee»

tested so that the frequency in each column had been large, it is

likely that the column means would much more closely a_pproxiu

mate a straight line pattern than did the means represented in

Figure 16.
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In the fashion already described, we could calculate also the mean
reading score for the pupils tallied in each bhorizontal row and mark
the position of the mean in each row individually. If this were
done, we would find ‘that these mmeans also would tend to lie along
a straight line, althotgh the position. of this straight line would not
correspond to that which best fits the means of the columns.

Whenever the relationship between measures of two variables
is such that the means of the rows and the means of the cohumns
on the scatter-diagram each tend to lie along a straight-line] we
say that these variables are “rectilinearly related, of that they
represent an instance of rectilinear correlation. /Not ‘all varia-
bles, however, are related in this way. Sometindes we find that
the means of the rows or of the columns lie along a curved line.
For example, if we were to plot on a scatterdiagram the age and
some :measure of bodily strength for_each individual in a group
which includes all age levels from infazncy to extreme old age, we
would find that, the. meanistrengtivdhor individuals of a given age
increases during the periods of hidhood and adolescence, that it
remains relatively stable fromg" early adulthood wuntil well past
middle age, and that it dC\cfeases at the higher age levels, dropping
quite rapidly when the @ge of senescence is reached. Tf ages were
plotted along the hgr\ﬁs})ntal scale and strength measures along the
vertical scale, the ‘sthooth line which would best fit the means of
the columns would be a curve running upward from left to right,
gradually ﬂe(tt}:ning out until the maximum was reached near the
middle oﬁihé age range, after which it would drop, at first slowly
and ;hé}l rapidly, to the end. Variables which show a curved
pa‘tt'g‘r}i of tally marks in a scatter diagram are said to be “curvilin-
eazly” related. Such variables cannot always be described as
being positively or negatively related, since the relationship may
be positive along certain portions of the scale and negative along
other portions,

If the means of the rows on g scatter-diagram tended to lie along
a straight vertical line, while the means of the columns tended to
lie along a straight Aorizomiql line, we would say that the two



THE MEANING OF CORRELATION 57

variables were entirely unrelated; that is, individuals high in one
measure would tend to be neither high nor low in the-other.
For any adult group, for example, height and intelligence would
probably show zero relationship, since the mean intelligence of
persons of any given height would tend to be the same as for
persons of any other height.

Because of the variety of ways in which two variables may be
related, it is difficult to describe in a single statement what s\
meant by a ‘‘relationship” between two variables. Perhapsitie
best general definition of related variables would be as follows:
measures of two traits for a given group of individuals may be
said to be related if all individuals in the group who"have the
same measure of one trait show less variability in-the second trait
than do the individuals in the entire groupa; For example, ac-
cording to this definition, height and wei{;&‘may be said to be
related because, if from any large grgmﬁwe select a number of
individuals all of whom are ofmmg%l}%}gygse i.ndi.v"i'duals'
will be more alike with respect to-weight thar are all individuals
(of differing heights) in the efitive group. This definition would
apply equally well whet};er"tﬁe relationship were curvilinear or -
rectilinear, positive o'rzngsgative. _

Measures of one ‘pair of traits, of course, may show a different
degree of relationship for the individuals in a given group than do
the measures’ofd different pair of traits for the same group, or the
same pair, b iraits may show different degrees of relationship for
the ind@cfuals in different groups. Using the approach suggested
by thie definition just given, wemay say that measures of two traits

ateighty related if individuals who are exactly alike in the measures
S\ of the first trait tend also to be very much alike in the measures of
the second. Measures of two traits may be said to show low
relationship if individuals alike in the first trait show wide varia-
tions in the second. Height and weight, for example, are not
highly related, since we know that individuals of the same height
may show wide variations in weight. Arm span (distance from
fingertip to fingertip when both arms are outstretched horizontally)
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is highly related to height, since this span tends to be very nearly
the same for all individuals of the same height and to differ pro-
portionately for individuals of different heights. Height and intelli-
gence are unrelated for most adult groups, since individuals of the
same height are just as variable in intelligence as are individuals
of differing heights.

Employing the approach suggested by the scatter-diagram, tie
variables may be said to be highly related if the measures in \each
row (or column) cluster closely abhout the line (either edrved or
straight) which most closely fits the means of the rows (Or columns).
On a scatter-diagram representing high positive rectilinear rela-
tionship, therefore, the more heavily concentra:céé[ tally marks
(or the larger cell frequencies) would tend toMall into a pattern
represented by a very narrow oval runn'ing\from the lower left-
hand to the upper right-hand corner, of the diagram. If the
relationship were medium and negative} the larger cell frequencies
would lie inside a.relativaly tbmgdppéell whose axis would run from
the upper left-hand to the lowet right-hand corner of the chart.
If there were no relationship-between the two variables, about the
same number of tally matks would be found in each quadrant *
of the chart, and the Qarger cell frequencies would lie within a
circle whose center‘v%}ﬂd lie at the intersection of the lines fitting

the means in thefews and in the columns. (See Figure 19.)
R

The Significotite of Correlation

The {ﬁ\ﬁure of the relationship and the degree of relationship
betweeh measures of two trats for the individuals in a given group
may be of significance in education and psychology for a number of
different purposes, among the most important of which are pre-
diction of future success, the description of the reliability and va-
lidity of measurement, and the study of cause and effect. These

and other ways in which correlation is important will be considered

z The_chart could be divided into four parts or “guadrants” by drawing a hori-
zontal line across it through the general mean along the vertical scale and & vertical
line through the mean on the horizontal seale,
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in greater detail later, and will therefore be only very briely
ilustrated here. '

To illustrate the significance of correlation in prediction, sup-
pose that a special examination designed to measure “gcholastic
aptitude” was administered last year to each member of the fresh-
man class upon entrance to a certain university, and that at the
end of the academic year a scaiter-diagram was prepared showidg®
the relationship between the scores made on this examinatiofi and
the grade-point averages earned by the freshmen during that year.
Let us suppose that this relationship is fairly high and, positive.
Assuming that the freshman class studied is fairly ‘répresentative
of succeeding freshman classes, this examinatién ‘could then be
used in subsequent years to predict, at the,'time of entrance,
which students would later succeed or fail it {heir freshman courses.
On the basis of these predictions, césain students could be ad-
vised to alter their plans, or could be"placed in sections in which
instruction is specially adapted’ bR er abitigyof the group
taught. If more than one eXamination designed for this purpose
had been administered $6'the freshmen at the beginning of the
year, and if it was lat"ér\ shown that the scores on one of -these
examinations wete “ore highly related to grade-point averages
than the scoreyonthe other examinations, then this examination
would, of cotirde, be the best to use later for purposes of prediction.
Through the'study of- correlations, then, a selection may be made
from .a%mber of possible difierent bases for predicting success,
ﬂot\b;ﬂy in scholastic work, but also in many other types of activity.
¢ \ Po illustrate the second of the purposes mentioned, let us suppose
that in an attempt to estimate the general spelling ability of per-

sons in a given group, two lists of 00 words each have been in-

dependently selected at random from the words in a certain
abbreviated dictionary. Suppose that each of these lists is ad-
ministered as a “list-dictation” test to the given group and that
the number of words spelled correctly in each list is obtained for
each student. The reliance which could be placed upon the score
_obtained from either test-as a measure of general spelling ability
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would be dependent upon the degree of relationship existing be. .
tween the two sets of scores. If there were no relationship be-
tween these scores — that is, if individuals making a high score
On one test were just as likely to make a low as a high score on the
other — then no reliance could be placed upon either score as a
measure of the ability of the individual student. If, on the othfr
hand, there were close agreement between the two sets of scores,
this would indicate that both tests are measuring the same{ability
with high dependability. The degree of correlation between
scores on equivalent tests, therefore, constitutes a maeasure of the
reliability of the measures provided by either tesg:.: )

To illustrate the third of the purposes mentiéned, let us assume
that for a given group of readers the mean ntmber of “eye fixa-
tions” per line made in reading a given printed selection is deter-
mined for each individual. Suppose, alsd, that for each individual
there has been secured g measure of Wiz of reading. If, then, it
can be shown ‘that 4P rﬂlghblﬁggé%i%élnrelationslﬁp exists between
mean number of eye fixatighs per line and reading rate, this
fact would suggest, although it would not prove, that the character
of eye movements is anlimportant factor in determining reading
ability. It would stggést further, although again it would not
prove, that an individual's reading rate might be improved by
specific trainingiitended to increase his eye span or to decrease
his number, of. fixations per line. Ii, again, a higher relationship
could be ghown to exist between number of fixations per line and
rwdh;g%fe than exists between some other characteristic of the
pf;lts\én’s reading habits and his reading rate, this would suggest
‘(but again not prove) that the first factor is more important than
the second in determining an individual’s speed of reading.

The Need for a Quantitative I easure of Relationship

The preceding illustrations are only suggestive of the many
ways in which a study of correlation between obtained measures
may be of assistance in attacks upon many educational and psy-
chological problems. For most of these purposes, it is essential
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that the description of relationship be reduced to a single numerical
index which can be conveniently interpreted and readily compared
with other similar indices. While it is possible to secire a rough
notion of the degree of relationship between two sets of measures
by simply inspecting the scatter-diagram prepared for them, just
as it is possible to estimate the central tendency and the varia-
bility of a frequency distribution by inspection, the notions thus,
secured are not sufficiently objective or quantitative for compara-
tive purposes. Our problém, then, given iwo sets of \féia’c‘ed
measures for a given group of individuals, is to derive from these
measures a single numbet or index which is proport;'ldﬁa.l to the
degree of relationship, and which is comparable t9”other meas-
ures similarly obtained. ' '
The Selection of an Index of Relationshig >
Suppose, then, that for each of theindividuals in a given group
we have the scores made on e&’qh‘:iﬁ&walsuhnq},exgminations and
that we wish to obtain a quahtitative measure of the degree of
relationship between these stores for that group. The arbitrary
character of the progedure which we shall finally adopt (the

Pearson product-mement coefficient of correlation) may best be
made clear by fifst considering and rejecting a number of other

equally arbittafy but less satistactory solutions.

Since th&’scores on these tests are expressed in difierent units,
it shou'@a:'t once be apparent that we cannot readily derive from
them\any measure of relationship until they have first been ex-

préssed in comparable terms. One way of doing this would be

86 express each score in terms of its rank position when the scores

on each test are arranged in order of magnitude. If this were done’
and if it were found that there was, in general, a close agreement
in the two ranks for each individual, then we could say that a
high relationship existed. If, on the other hand, large differences-
between the two ranks characterized most individuals, then we
would say that a low or perhaps even a negative relationship-
existed, depending upon the magnitude of the differences. This
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suggests that we could secure a quantitative index of the degree
of relationship by determining the difference in the two ranks for
each individual and then averaging these differences for the entire .
group. If the mean value of these differences (all differences being
considered as positive) were very small, we would say that a high
relationship existed. If the mean difference in rank were large,
the relationship would be low or negative. The magnitudelof
this mean difference in rank, however, obviously would depend
upon the number of individuals in the group. A differéncé be-
tween a rank of 3 and a rank of 7 would have qui,te',;a: “different
meaning in a group of 1o individuals than in a)grotp of 100,
Hence, this type of index would not be comparable for groups of
different sizes. \

This objection could be overcome by exp‘ésszing each score as a
percenlile rank, and finding the mean difference in percentile ranks
for the various individuals. This fndex would be comparable
for groups of different bl %8I be inversely proportional
to the degree of relationship (thé' smaller the mean difference, the
higher the degree of relationship), and would continue to increase
as the relationship changed'from positive to negative. Tt would
therefore be difficult (to/determine any point along the scale of
possible values of.!he mean difference in percentile ranks that
would correspong t6 zero relationship. Furthermore, as we have
already learnédy percentile ranks are not directly proportional to-
the originah\faw scores, and the variations in inter-percentile dis-
tances ffom point to point throughout the scale would introduce
~ .ambiguities into the measures obtained.

4 "~§§;t\iother possibility which has some advantages over the preced-
iingsuggestionsavould. he to €xpress the scores in each set as stand-
sarid -measures or z-scores,:toifind tthe.difference between the two
z-scores for each individual and compctel Hrermean of these differ-
ences (all differences being considered -as positive). This measure
would provide a dependable basis ffor comparing ‘the degrees of

- relationship between two sets of variables, but again-would be
difficult to interpret because it would e inversely proportional:to
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the degree of relationship, and would remain positive in cases of
negative correlation.

The Mean z-score Product

There are many other ways in which z-scores (or other derived
measures) corresponding to two related sets of measures may be
combined arithmetically se as to produce a single number or index
that is indicative of the degree of relationship existing. Oneof the
most promising of these consists of determining the (g.lg"elira.ic)
product of the two z-scores for each individual a.nc% ﬁ.nding the
mean of these products for all individuals concefned. Let us
consider some characteristics of the index thus derived.

Suppose, first, that the relationship between the two sets of
measures for the group considered is high, fositive, and rectilinear.
This is equivalent to saying that most individuals ahove average in
one trait are also above average in E{lﬁgﬁ%gﬁ jriljz}l"tllifl't c{nly arelatively
e above averagé Hfdhe measure

small number of individuals a
and below average in the ofher. * If this is the case, then the ma-

jority of individuals in_the: group will either have two positive
zZ-scores or two nega.tl'\(b s-scores. In either case, the algebraic
product of the z-scotes for such individuals will be positive in sign.
For the relatively-small number of individuals with a positive
z-score in one distribution and a negative 2-score in the other, the
z-score py&iﬁ{:ts will be negative. Many of the positive products,
furthermore, will be quite large, since high z-scores in one dis-
t,"iblii;\mh will usually be paired with high zscores in the other,
ahd’low (large negative) 2-Scores in one distribution will be as-
sociated with low z-scores in the other.. For the entire group, then,
the sum of the positive z-8cor¢ products will greatly exceed the
sum of the negative z-score products, so that the mean of the z-
score products for all individuals will be positive. o
Suppose, next, that the relationship considered is positive but
low. This would mean that, while again most individuals above
average in one measure would aiso be above average in the other,
and vice versa, there would be a larger pumber of instances than

Q)
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before in which individuals above average in one measure would
be below average in the other. There would also be fewer large
products than in the first instance, since individuals with extreme
z-scores (either high or low) in one distribution would seldom
also have extreme z-scores in the other. In this case, then, the
sum of the positive z-score products would not exceed the sumyof
the negative products by as great an amount as in the fixst in-
stance, and, while the mean of the products for the entire ‘group
would still be positive, we would not expect it to besaglarge as
before. In other words, we would expect the mean gscore product
to be larger for high than for low degrees of relationghip.

Now let us consider the cage of unrelated medsitres. To say that
two sets of measures are entirely unrelatedsfof given group is to
say that individuals above average in-oné measure are equally
likely to be above average or helow ’a:ﬁérage in the other. For
the whole gmf\?{q,ﬂﬁghlt‘ e pﬁg}l@% of positive zscore products
{except for cHandsy woul %e,.,e.qual to the number of negative
z-score products. The individual products would also tend to be
small, since two extreme Z8¢ores would seldom be paired together.
The negative products; :f\urthermore, would tend to be about the
same size as the pOEﬁve products. The algebraic sum of these
products for thp. ge:ntire group would therefore approximate zero,
as would the mean of the products,

It should‘uew be apparent that if the relationship were negative
— that i5,3f most individuals above average in one measure were
belowﬁéverage in the other — then the z-score product for most
individuals would be negative in sign. The algebraic sum, and
Shence the mean of all z-score preducts, would therefore be nega-
tive, while the absolute magnitude of the mean product would
depend upon the degree of relationship.

Now let us consider fmally the case of perfect rectilinear relation-
ship. To say that two sets of measures are perfectly velated
{rectilinearly). for a given group is to say that each individual has
exactly the seme relative status in both. distributions of measures.
This again is equivalent to saying that every individual has
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exactly the same z-score in both distributions. This being the case,
the product of the two z-scores for any one individual must be the
same as the square of either of his z-scores taken alone. Hence, the
sum of the z-score products for all individuals is the same as the
sum of the squared z-scores for the first distribution alone (or for
the second distribution alone). From this it follows that the mean
z-score product would be the same as the mean of the squared
z-scores in either distribution. O\

At this point, we may remind ourselves that the standdrd ‘de-
viation of any distribution of measures is the “square 100t of the
mean of the squared deviations from the mean.”’; "Since each
z-score is itself a deviation from the mean, the standard deviation
of any distribution of z-scores is equal to thf;\\*:aguare root of the
mean of the squared z-scores, that is: &<
5.D. (of soscores) E

ww Al ra%rlibl:ary. orgin
But the standard deviation of any eomplete distiibution of z-scores

is 1.00 by definition. Hence, §*

#}z’
po = L.00
N

Squaring bhoth sides p?\t\his expression, we get
o
\~\ . N = L.00

since the sguare of 1.00 is still 1.c0. The mean of the squared
z-scores,(then, is always equal to unity for any complete distri-
b“tin\J:!fif Z-SCOTeS. .

¢We'have already pointed out, however, that when two sets of
medsures are perfectly' related rectilinearly the mean of the
z-score products will be the same as the mean of the squared
zscores for either distribution. Since the mean of the squared
z-scores is always 1.00, it follows that the mean of the z-score
products is, in the case of perfect rectilinear relationship,. always
equal to unity. If the relationship is perfect and positive, t].ne
mean of the z-score products will be +1.00. If the relationship
is perfect and negative, the mean z-score product will be — 1.00.
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If, then, we have two sets of measures that are rectilinearly
related for a given group, if we transform the measures in each
distribution into their z-score equivalents and obtain the product
of the two z-scores for each individual, the mean of these products
for all individuals will have the following characteristics:

Its value will be positive when the relationship is positive.

Its value will be zero when there is no relationship.

Its value will be negative when the relationship is negative.

Its value will be -+ 1.00 when the relationship is perfegt‘and pos-
itive. -

Its value will be — 1.00 when the relatlonshap is perfect and
negative,

Its value will lie between + 1.00 and <o for intermediate
degrees of relationship, and will be larger for high than for low
degrees of relationship. (For reasong.that will be given later, the
mean z-score Productbinagidigdtroportional to the degree of
relationship. For example, a giéan product of .8 does not indicate
twice as close a relationship, asa mean product of .4.)

Because of these characteristics, the mean z-score product is an
excellent index for the\qua,ntltatwe description of degrees of re-
lationship when thleelatmmka;ﬁ is known to be rectibinear. The
use of the mean@score product for this purpose was first proposed
by the Englksk statistician Karl Pearson and is therefore called
the Pearso?a“product—momt coefficient of correlation. The uni-
versal‘qotatmn for this coefficient is . It may be algebraically
deﬁnéd as follows:

,;“\. | o "xu=% (21)
in which r,, is the coefficient of correlation between the x and
y measures, in which Zz.7, means “the sum of the products of
the z-scores for variables x and y,” and in which ¥ represents the
number. of products or the number of individuals in the group
studied. Other subscripts may be used to identify the variables.
For example, r» would be read “r sub one, two,” and would
mean “the coefficient of correlation between variables 1 and 2,”,
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while 7,5 would be read “r sub four, six,” and would have a similar
significance.

The Computation of r : _,

We have already seen that the coefficient of correlation between
two rectilinearly related sets of measures for any group of individ-
uals can be computed by (1) transforming each measure into its ,
z-score equivalent in its respective distribution, (2) multiplying
the two z-scores for each individual in the group, and (3) ﬁJ{dmg
the mean of these products. : _ \

While this computational procedure is easily explained(anid read-
ily understood, it is rendered impracticable by the gogunt of time -
required for the first step, particularly where the number of
casesis large. Inthe practical situation, it is much more economi-
cal to work directly with the raw score va}u‘ésst A formula for this

purpose may be derived by substitutiag T_ile following values of

Ny

2, and z, in Formula (21). wwdidbraulibrary org.in
X-M, y-M,
sx = " Y g’ =
o, . ar

\\R ' |
(where X equals a raw scoteMn the X distribution, M, equals the
mean of the X’s, o, € tals'the standard deviation of the X distri-

-

bution, and where ¥, M,, and ¢, have a gimilar meaning.)
The result of $hi substitution is :

7,3 XY
R S T
= o  Ta Ty . _ 3 E
(While the mathematics required to understand the derivation of
fhis formula from the simpler z-score expression is not beyond the
average high-school graduate, in the interests of economy of time
the beginning student in statistics is advised to take Formula (22)
for granted and not to concern himself with the algebra of its
derivation) ' ' :
According to this formula, th
two sets of scores or measures may
list of paired scores, as follows:

2 &

coefficient of correlation between
be obtained from an unordered
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1. Compute the mean and standard deviation of each set of
measures.” _
2. Secure the product of the two raw scores for each individual,
add the products and divide the sum by ¥, the number of
cases,
3. Subtract from the mean of these products the product of
the means of the two distributions. \
4- Divide the result by the product of the two standard deyiaions.
If a multiplying type of computing machine is available, if a
scatter-diagram of the measures is not desired, and jf-the number
of cases is small, this procedure is perhaps as goddras any other.
When a computing machine is not available;{and when a large
number of scores are to be correlated, a more gronomical procedure
is to compute 7 from a scatter-diagram{(by a “short” method
(analogous to that used in computing'the mean and the standard
deviation of a frequency distribution in which each score is ex-
pressed as a WVIatigH“ WO Yaff¥ithitrary reference point (or
guessed mean) in'its own disfribution.
The formula employed, for this purpose is:

"’..;szh_ o\ Jz;ﬁ EAY
C N N N N N
in whim:xi%ments the deviation of an X score from the arbi-

trary séféfence point (AR.) in the X distribution (that is,
&’ =X'— AR.), and 5’ represents the deviation of a ¥ score
N :

(23}

¢ "\*The mean of each set of measures may in this case be computed by simply adding
the raw scores and dividing the sum by the number of cases. The standard devia-
tion of each series can similarly be computed without preparing a frequency distribu-
tion by (1) squaring each raw score; (2) securing the sum of the squared scores for
the whole series; (3) dividing this sum by ¥; (4) subtracting from this quotient the
square of the mean score; (5) extracting the square root of the result. The formula
for the standard deviation employed in the preceding steps is

N

This method of computing the standard deviation is, of conrse, not restricted to the
present application.
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from the arbitrary reference point (AR.) in the ¥ distribution.
y' means “the sum of the #”s,”” 2y’ “the sum of the ys,” Zx'y’
“the sum of the &y’ products,” and 2z and Zy™ “the sums of
the squared x”s and the squared 3"’s” respectively.”

The application of this formula may be greatly facilitated by
employing a specially prepared *“correlation chart.” Thereare many
such printed forms available. A copy of the one recommended for
ase with this text is attached to the inside back cover:of thig®
book (Figure 17). The directions for the use of this chart(aré
given on pages 169 to 174. The statements in brackets illg’stréte
the application of this procedurein computing the coeffigient of cor-
relation between the scores given in Table 20, as showp inFigure 17.

Directions for Using the Correlation Chars \

1. Let one of the sets of measures to be correlated be known as

the X series, the other as the ¥ seri:es§ ) '
[In the illustrative problemﬁ:athé E.T. scores are taken
as the X series, the M.ﬁﬁwa\é’@%egas?shh{gry%&-]

2. Find the range of the measuyes in the ¥ series. Determine
the appropriate intert{al‘féf grouping these measures, as ex-
plained in Chapter I (Be sure not to let the number of
intervals exceed%{i); ) ‘Write the integral limits of the intervals
in the extrenie left-hand column on the chart just as you

would writ€tliem in the score coluron of a frequency distri-

bution.,»Fty to arrange the intervals on the scale so that the
the ¥ measures

inter¢al most likely to contain the mean of
will fall between the heavy lines in the middle of the chart.
A" [An interval of 2 is used for the M.A. scores, and the
"\ integral limits are written in the column at the extreme
left of the chart (see Figure 17,00 the inside back cover),
leaving two blank rows at the bottom and one at the top

of the chart.]

* While Formula (23) may be derived from Formula (2x) without the use of com-
plicated mathematics, the student. of elementary gtatistics is again advised to take
this formula for granted and to be content with the assurance that it is the exact
algebraic equivalent of Formula (z1). ; :

a Copies of this chart may be obtained from Houghton Mifflin Company.
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TABLE 20
ScorEs MADE oN THE ENGLISE TrANING (E.T.) AND MATHEMATICS
AptrrupE (MLA.) TEsTS oF THE IowA PLACEMENT EXAMINATIONS
BY 50 UNIVERSITY OF lowa FRESHMEN

Score Score
Student (E.T) (M.A) Student {E.T.) (M.A)
Number X ¥ Number X Y
1 7L 17 26 128 15 O\
2 79 33 27 137 1y
3 122 10 28 86 K¢ 2%
4 92 19 29 TR
5 99 33 30 137 ) 23
g ;2 9 31 46 \! I
I4 32 Y 23
8 129 9 33 157 27
I ® 0%
29 35 I
poo A
II , ISI F4
13 117 24 jg\ ’ gs 14
14 I2g 42 N 001 3 -
o8 o2 O g
. O 4
17 4 . S 42 : 19
:g \a\i‘t%v_dbrauﬁin ary:.gf gin 4 g; t4
NN 1 9
20 90 32,0 ﬂ 80 30
21 1s0 30" 46 155 26
;; g; . Fe] 4§ 42 Ig
ET
24 B (Vs po & 5
25 72\\ R 3 1 50 13 20

3. Now find’the range of the X series. Determine the interval
and vmf.e the integral limits of the intervals (beginning with
Nowest) from left to right along the upper row on the
~6hart Again arrange the intervals so that the one most
3Mlikely to contain the mean will fall at the center of the chart.
\\ ~_' [The range of the X series is 163 — 25 = 138, and an
interval of 10 units is employed. The integral limits
20-29, 3039, etc., are written in the row at the top of
the chart. The ]J'mits are 50 entered that the middle of
the range comes between the heavy vertical lines, leaving

three blank columns at each end of the chart.]
4. Now we are ready to tabulate the measures. Each tally
- mark on the chart is to denote two things: Tts vertical
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position on the chart will denote the ¥ measure of a pair;
its horizontal position, the X measure of the same pair.
" There will be one tally mark for each pair of measures or
for each individual. Begin with the first pair in the List.
Find the interval along the ¥ scale in which the ¥ measure
of the pair will fall. - The tally mark for the first individual
will fall somewhere in the horizontal row determined by this ,
interval. Now go along this row to the right until you come,
to the vertical column corresponding to the interval alohg D
the X scale in which the X measure of the pair will fall.
Place a tally mark at this point. The tally mark for the
fivst individual will then fall in the horizontal ropfeétermined
by his ¥ measure and in the vertical column defermined by
his X measure. In the same Way l_ocat.f:.ﬂ}c‘tally mark for
the second individual, for the thirdyetc., until you have
made a tally mark on the chart fof.¢ach individual (or for
each pair of meastres) in tREgeglfyulibrary.org.in
[The first pair of meaaui:eé’in Table 2o is 17 (¥) and
71 (X). The tally: m@rli'for this individual will therefore
lie in the 16-17 rowand in the 70-79 column, that is, in
the ninth cell ftont the left in the TO% labeled '16-17.
Similarly, thé tally mark for the second ‘individual is
placed in/the/ninth cell of the row labeled 32-33, and that
for theghird individual in the fourteenth cell in the row
1a‘t\>e\léd'm-n.]--' o :
5. Now ‘count the number of tally marks in each horizontal
y '\T:G%ﬁ and place the result for each row in the f column at the
\/right of the chart. Next count the total number of tally
* marks in each vertical colummn and place the result for each
column in the f row at the bottom of the chart.
" [The number of tally marks in the 42-43 row is 2, in
the 38-3¢ row is 1,1 the 34-35 row is I, €t The numbers
are entered in the f column at the right of the chart.
Similarly, the number of tally marks in the 20-29 column
is 2, in the 40-4¢ column is 3, etci;- a8 is shown in the |
row at the bottom of the chart.}
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6.

7.

8
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Total the frequencies in the f column and write the result in
the square at the bottom of the column., Also total the
frequencies in the f row at the bottom of the chart. The
two sums should agree and should be equal to ¥, the total
number of cases.

[The sum of the frequencies in the f column is 50, which

‘checks with the sum of the frequencies in the f row]
Multiply each frequency in the f column by its corresponding
deviation in the 4 column. Write the product ifi ‘each case
in the adjoining 4’ column. The 3’ column here ¢orresponds
to the fd column in an ordinary frequency\odistribution. Do
the same for the frequencies on the scile at the bottom of
the chart, writing the products in the's’ row.

[In the y" column at the righ{o}‘ the chart the numbers

enteredarerg—IS IXN 7 T X5=75,3X4=12
Slmﬂa(ﬁaydulpbtl:}égyxmfgo;v at the bottom of the chart,
zx =7 = —14,3 X S%= —15,etc]
Multiply each producty in'the 4 column by its corresponding
deviation in the d column. Write the resulting product
in the y" column\ The ¥ column here corresponds to the
- f@* column kk\an ordinary frequency distribution. Repeat
the process' for the scale at the bottom of the chart, writing
the products in the 2'* row.

[In the ¥ column, g X 18 = 162, % X 7 = 49, etc.  Sim-
\ﬂarly, in the 2" row, 7 X —~14 = —08, 5 X —15 = —75, etc.]
f‘ind the a.lgebra:lc sum (taking account of signs) of the pum-
* bers in the ¥" column, and write the sum in the cell at the
bottom of the column. The sum is denoted in the formulas
by 2y'. Also total the numbers in the ¥ column and write
the result at the bottom of the column. The symbol for
this sum is Zy". In the same way find 2+’ and =z along
the bottom of the chart.

[The algebraic sum of the 3’ column is Zy = — 89

The algebraic sum of the &’ row is 2+’ = — 5. Similarly
Zy'* = 1165 and Za’* = 650.]



DIRECTIONS FOR USING THE CORRELATION CHART 173

10. Now multiply the small number in the upper right-hand

TI.

I2.

13. Now yom hdve found the values of Zx

e A

corner of each cell by the number of tally marks in the cell,
and write the result in the upper left-hand corner of the
cell. This result is the “product-moment” for the frequen-
cies in the cell. Find this product for each cell that con-
tains a tally mark, taking account of signs.

[For example, there are two frequencies in the cell
common to the 14-15 row and the 50-59 colurnn.  The
small number in this cell is 2o, hence the “produch
moment” for this cell is 2 X 20 = 40.] O

Now find the sum of all positive product-momentsin each
horizontal row and write the result in the ()" column.
Then find the sum of all negative productdnoments in each
row and write the result in the (=)' .@lnmn.

[For example, the sum of the positive moments in row
14-18 is 25 + 40+ 10 = 75, and\the sum of the negative

moments is 15 + 30 = 45":]‘?:’4b“"“b"m‘ym'g-in

Total the () and (+) «'3 ‘polumns and find the algebraic
sum of the results. Thisfinal sum is denoted in the formulas
by Zz'y'. \" _

[The sum of the’ humbers in the + 'y column is 458,
and in the X 2’ column is 390. The total of the &'y’
products"g;’;fés — 190 = 208, Hence, Za'y’ = 268]

(. Zy, 2%, 2y, and
of E:QJ’ Each of these values must be divided by N to give
A0 ' zy Tt Byt IV

NN —N—“:—F’:FI—V—'; N,a.n N

F 4 ‘\ '3 . . . ]
Y Spaces for the computation of these values are provided
along the right-hand margin of the chart.
Ex' -5 . _E_xf. = ?é_? = 17.18;
FoET T N T
- r 116
zy _—% . B 305 g o

29 5.8
N 50 1% TN 5o
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Zy .
Fy) to give the values

E Na AT )
of (—%) a-nd_(%}) , and write the results in the appro-
priate spaces in the right-hand margin also.

[(Zx’)z‘ (=107 = .o1; (%)z=("1'78)2=3517}

15. Now compute the values of the standard devia.tiqix%;\using
the formulas given in the middle of the nght ha.nd margin
of the chart. .

l:o' -—‘\/13 18 — ox—‘\/13 17—3\63 ]
= V2330 3.17 = V2o a3 = 4.4

Note: It is very important to nof{e {hat thesc standard de-
viations are expressed in units gf the interval and not in raw
score valyess:. dBihwl k', oshpuld be expressed in interval
units in the formula forv: given on the chart, but if the
S.D.’s in raw score units are nceded for any other purpose,
the values here obtgtined must be multiplied by the size of
the interval in each case.

[The 5.D, ofithe X measures is 3.63, expressed in interval
units. Sinéean interval of 10 was used along the X scale,
the $.D2ofthe English Training scores is 3.63 X 10 = 36.3 in
1aw "geére units. The S.D. of the Mathematics Aptltude
chges is similarly 4.47 X 2z = 8.94.]

6. ¥ou will then have all the values needed for substitution in
~ ”‘ the formula to give the value of » — the coefficient of correla-
\J tion between the paired series. Substitute these values in the
formula, reduce the expression to a simple decimal number,

and write the result as the value of 7.

I}=5.36—(—« .10) (— 1.78) _ 5-36 —.178
3-63X 4.47 - - 3.63X4.47

.182
" 16. 23 - .32

. r
14. Now square the values of (%’) and (

Ul
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While the student of statistics must necessarily become ac-
quainted with economical procedures for computing 7 from raw
score data, he is strongly advised to make no attempt to base
his snferpretation of ¢ upon the relatively complicated formulas,
such as Formulas (22) and (23), which are used in such computa-
tion. These formulas are extremely difficult to interpret directly
and are likely to create the false impression that the correlation
coefficient is a much more complicated concept than it really is,
The Pearson product-moment -coefficient of correlation is nothing/
more than a simple average (mean) of a number of Z-SCOTE, Pro-
ducts, and the student should do all of his thinking ghout the
correlation coefficient in terms of this relatively giglple z-5core
definition, or in terms of Formula (21). - O
The Phenomenon of Regression (N N\

An interesting characteristic of the fregliency distributions of
measures of two rectilinearly Ieﬁféﬂziﬁﬁ%.'%m?“gﬂwp of in-
dividuals is the fact that if; frgm'-.ﬁ:ke: total: group, a number of
individuals are sclected all of whom areexactly alike with reference
to the first trait, these individuals will, on the average, lie closer to
the general average of'ajé@’séoond trait than they do to the general
average of the first.(\Suppose, for example, we consider the rela-
tionship bhetween feight and weight for any large group of adults.
i, from the .to‘ﬁzﬂ' group, we selected a number of persoEas. all of
whom wefs{é‘tfeet 3 inches tall, we would find these ipd{ﬂfiuaJS,
on the average, less extreme in weight than in height. Similarly,
if ,ﬁ’e'éé‘iécted from the total group those individuals who were,
say ) 275 pounds in weight, we would not expect the average In=
dividual in this group to be as extreme in height as In weight.

A few of these heavyweight individuals would also be unusually

tall, but many of them would be only moderately tall or even
below the general average in height. ~Again, if from the total
group we selected a-number of individuals all of whom were
extremely short, we would fnd -that ‘on the average these 1?d1‘
viduals would be less cxtreme in weight than in height, since
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many of these short persons would be near or above the general
average in weight.

Again, suppose that a test in general mathematics and one in
world history were administered to all freshmen in a given uni-
versity. If from the total group we selected a number of individuals
who were outstanding in their performance on the mathematics’
test, we would find that, while most of these individuals watild
also be above average on the history test, only a few of themwould -
be as far above average in history as in mathematics. JForthese
selected individuals the mean score on the history’t,egf‘ would be
lower {when expressed in comparable terms, sifeh 4s z-scores)
than their scores on the mathematics test. .Sinf'ilarly, most in-
dividuals making very low scores on the history test would make
better scores on the mathematics test. , 7"

This phenomenon is one which Wg‘h}w: all noticed, but which
we have seldom,mpgg@gligrﬂggggﬁaﬁve terms or referred to as
the “phenomenon of regression:!™\ "We have all observed, however,
that individuals selected bejféa{:ée they show a certain degree of
superiority in one trait. (whether the superiority is marked or
slight) are seldom equally superior in other related traits, and that
individuals inferia{'\in one trait are seldom equally inferior in
others, :

A graplﬁp.igp}esentation of this phenomenon will be helpful in
arriving af’d more exact understanding of its character. The two
frequéﬁ\cj* curves in Figure 18 represent the distributions of meas-
urgs ‘of height and weight for the same group of adults. The

.. X distribution represents the distribution of height; the Y dis-
Jtribution, that of weight. Both distributions are plotted along
comparable (z-score) scales. In the height distribution there has
been marked off a shaded area including individuals who are be-
tween two high values on the height scale. Let us suppose that
there are 12 individuals in this interval. For each of these in-
dividuals there has been located the position of his weight in the
distribution of weights, and a line has been drawn from the mid-
point of the shaded interval to each of these positions. We note
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that three of these individuals are higher up along the weight
scale than along the height scale, but that the others are less
extreme in weight than in height. This is consistent with what
we have already observed about the nature of the relationship
between height and weight. The mean weight of these 12 indi-
viduals is indicated by the point M, and 2 heavy line has been .
drawn from the shaded area to this point. We note that this
line points inward toward the middle of the weight distribution,
that is, that the mean weight of these 12 individuals is only about,
half as far from the general mean, My, of the weight distribytion”
Height (X) Weight-(¥)

Fre. 18.
of regression in terms of the
weight for a given sample.

Hustrating the phenomenen distributions of height and
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as the shaded interval is from the general mean, M, of the height

distribution. In other words, %, is less than z,,

This picture sugges.s what would be found in the distributions
of any two positively related traits for any group. If the rela-
tionship between the two traits were perfect, then the lines from
any -interval in the left-hand distribution would all run exactly
horizontally across to the other distribution, that is, every measure
in the one distribution would be paired with another (with the
same relative status in the second distribution. If the rélation-
ship were high but not perfect, these lines wouldisﬁiread apart,
but would form a relatively narrow “fan,” and'the heavy line
(to the mean value of the second variable forthe selected group)
would be deflected only slightly toward the'middle of the second
distribution. If the relationship were #ery low but positive, the
lines would spread to nearly all parts‘\)f the second distribution,
and the heavy line would point ‘miore sharply into the middle
of that distribitiofPragilRE RN vere entirely unrelated, the

 lines would spread throughb{it’ the whole of the second distribu-
tion, and ‘the mean of the selected cases (M]) would coincide
with the mean of the(entire unselected group. For example, if
height and intelli Qi‘}cé were the measures concerned, and if lines
were drawn frpm ‘an interval near the lower end of the height
scale to the .pésitions of the corresponding measures on the in-
telligence scdle, these lines would spread throughout the entire
mteuigi}ce distribution around a mean which coincided with the
genef mean in intelligence. This is the same as saying that
short persons are just as variable in intelligence and show the

("\same mean. intelligence as tall petsons, or as the persons in a group

of individuals of differing heights.

If the relationship were negative, the majority of the lifies from
any one interval in the first distribution would go to the opposiie
half of the second distribution, as would the heavy line (at the
mean of the selected cases). _ :

In general, then, the higher the degree of correlation, the nar-
rower will be the fan-shaped pattern of lines drawn from scores in
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a certain interval of one distribution to the corresponding meas-
ures in the other, and the more nearly honzxmtal will be the heavy
line. drawn to the mean of these selected cases. As long as the
relatlonshlp is not perfect, this heavy line will point inward, how-
ever slightly. The lower the correlation, the wider will be the
spread of these lines, and the more neariy'wﬂl the heavy line.
point to the middle or general mean of the second distribution
In other words, for indlvldua.ls selected from a given grot:p*be-
cause they are alike in one trait, the mean value of a second velated
trait will regress toward the general mean of the second™ trait for
the .entire group. The amount of this regrassmn \(equa.l to the
distance @ in Figure 18) can be shown to be invésely related to
- the coefficient of correlation between” the tyo, measures. With
perfect correlation, there is ho regresszon With zero correlation,
the regression is complete, that is, the mean of the selected cases
will: coincide with the general meau of the seoond dlstni)utlon
and z, will become zero. WWW dbrau [Lbral yorg in
A’ more complete understadding of the exact nature of the
phenomenon of regression aay perhaps be: acqulred by consider-
ing further just what it ifieans graphically in terms of the scatter-
- diagram showing the “elationship between two sets of measures.
The oval in Flgure 39'represents the pattern of the distribution of
tally marks on a scatter-diagram showing the relationship be-
tween height. aitd weight for a given group of individuals. For
the sake é\smlphclty in illustration, the taily marks themselves
have been omitted from the chart, but the student ¢an visualize
thﬂm As being distributed over the area included inside this oval.
Th!s then, would represent a case of fairly high "positive relation-
ship. The scales employed in plotting this figure are the z-score
‘scalés’ corresponding to the original scales of height and ‘weight.
These scales have been used so that the deviations from the mean
along either scale may be directly compared. Again, for the sake
of simplicity, only one column (C) and oné row (R) are shown.
The point A represéntsthe mean weight of the individuals tallied
“in column C, that is, of a group of individualsall of the same height
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f— 2x —
z,
= B2
N
2\
 (F
\ Y
2y
F1e. 1g.
Tlustrating the ph&uomenon of tegression in terms of the scatter<liagram of height and
PN weight measures for a given sample.

. N _
and a\.l(&‘ﬁhom deviate from the general mean (M,) of the height
distribution by an amount equal to 2, (at top of chart). It will
mow be noted that the point A lies closer to the horizontal line
\ ) M, representing the general mean in weight than it does to the
vertical line M, representing the general mean in height. (This
is apparent because the point 4 is above the diagonal DD, which
is equidistant from the two axes)) In other words, individuals
all of the same height are, on the average, nearer (z,) to the general
mean in weight than they are (3) to the general mean in height,
that Is, 2, is less than z,. (Do not confuse z, with z,, or z, with
%). Still another way of saying this is to say that the ratio
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3,/2, is less than 1.00, since the numerator in this expression is
smaller than the denominator. This ratio, furthermore, may be
shown to be proportional to the coefficient of correlation, that is:

z :

L]

2=

% :

Tf the relationship were perfect, then all of the tally marks would
lic along the diagonal DD, and the point 4 would therefore lie €
on this diagonal and be equidistant from the two axes. In this
case, 7, would be equal to %, and the ratio 2,/2 would be\equ’al
to 1.00, as would the coefficient of correlation. I the wvariables
were unrelated, then all of the tally marks would be \cojnsidered as
lying within a circle with center atJ. The poin¢ 4 would then
le on the line M, and Z, would be equal to zerdy The ratio ,/%.
would then be equal to zero, as would the ent of correlation.
Similarly, if we consider only the indi¥iduals in a single row R,
all of whom are of the same weight, (z,), we find that their mean
height (represented by point Wﬁéb%%?"%wﬂ'g.than to M,,
that is, we find that 2, is lessthé.h z,. Again, the ratio between
%, and 3, would be proportionai to the coefficient of correlation,
that is: O :
_ &

e

T bl

eMld

On any chQrft\of this kind, representing 2 positive rectilinear
relationship, between two variables, the mean, A, of any column
would Meoeloser to the horizontal than to the vertical axis. The
mea@fbf the other columns in Figure 19 (if they were showq)_
owould lie approximately along & straight line drawn 'fhrough A

4d O. Similarly, the means of the other rOWs would lie near the
line drawn through B and O. These two lines are known as the
“regression lines.” If the relationship were perfect, these two

lines would coincide along’ the diagonal DD. The amount by

which they would diverge would depend upon the degree of re}a-
{ uld coincide with

tionship. If the relationship were ZT0, they wo %
the vertical and horizontal axes, and would therefore be at right
angles to one another. (Note that these statements apply only"
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when both measures are plotted along comparable z-score scalés.)”
We have aiready noted that

ngﬂl
NI“ 1

Teoy
M .

Hence
: = rafy, (24)
in which z, is any given z-score in the ¥ distribution, and %;
the mean z-score in the X distribution for those individuals)with

"N\

the given z-score in the ¥ distribution. Similarly,

. . B, = rﬂ‘g: . ~ :”:' (25)
in ‘which z, is any given z-score in the X dlstnbutlon, and %, is
the mean of the corresponding z-scores in the W distribution.

- These equations (24 and 25) are known as.the “ regression equa-
tions” {in z-score form). Their application may be illustrated as
follows: Suppose that the coefficient of eorrelation between height
and weight for avgivedbgrotipwf adailteis » = .6. If from the total
group we selected all individualswith a z-score of 1.4 in the height
disttibution, we would find tlia,f their mean z-score in the weight
distribution would be 1 4 X .6 = 84. Again, if from the weight
distribution we selectedﬁll individuals with a z-score of — 2.0, We
would find that the\\ﬁean z-score in the beight distribution would
be —1.2. If a, correlatlon of — .75 existed between two sets of
meagures, the 1nd1v1duals who were 1.4 of a standard deviation
above a.vera\ge in one distribution would, on the average, be
1.4 X %75 = (=) 1.05 of a standard deviation below (because of
neganve sign) the general mean of the other distribution. These
¢ o~x;egre5310n equations, then, are simply a way of saying in a.lgebralc
language that the amount of regressxon is dependent upon the
degree of relatlonsh.lp

The Use of the Regression Equations in Prediction

"The significance of the regression equations for practical work
in educatlon and psychology lies in the fact that they constitute
an ob]ectlve meéans of estimating the value of one variable for an
individual when the value of another related variable is known for
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that individual, and when the degree of correlation’ between the

two variables is known for the group to which he belongs. If,

for example, we know that an individual’s height is. 1.2 S.D.’s

above the mean of the group to which he belongs, and if we know

that the coefficient of correlation between height and weight for

that group is .5, and if the relationship is rectilinear, then the best

estimate that we can make of his z-score in weight s .5 X 1.2 = 6,
because that is the mean z-score in weight of all mdlvldua.ls

(from the total group) who aie of the same helght as th,e Ziven

individual. -

Again, suppose that a test of scholastic aptltude was given a
year ago last fall to all entering freshmen in a ceftdin university
and that at the end of the academic year it wag\discovered that a
correlation of .y existed between the scoresion this examination
and the grade-point averages earned by the'students during their
freshman year. Suppose that in the fall'of the present academic
year the same test was admmfﬁféi“é&d‘t@!hémtcnlglfreshmen and

-that on this test a certain freshman earned a z-score of + 1.8.
Let us now assume that the ffeqquency distributions of test scores
and of grade-point averages for the present freshman class will
each show.the same cepfsal tendency and variability as the corre-

_sponding dxstnbuﬂo&r the preceding class, and that the coeffi-
cient of oorrela.txon between these test scores and . gra.de—pomt
averages will be) appronmately the same this year as it was last

-year. Acgerding to the. principle of regression, the ‘individusls
"who ma(l&\a z-score of + 1.8 on the scholastlc aptltude test this
. year Wﬁl on the average, earn a grade-point average that is 1.26

S SQ % above the general mean of the distribution of grade-point
averages for the entire class- (7 %1 8). Acoordmgly, the best
prediction that we can make for any one of these individuals i is
that he will make a grade—pomt a.vera,ge with a z-score eqmvalent
of + 1.26.

One further ustration of t]ns use of the regression equations
might be considered here, this time in the field of industrial psy-
chology. Suppose that the sales organization of a large corpora-
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tion had followed the practice of administering to each applicant
for a position as salesman a test of “‘salesmanship ability.”
Suppose that on the basis of past experience it had been shown that
there was a coefficient of correlation of .8 between the scores on
this examination and the sales records later made by the appli-
cants.” The sales manager could then use the regression equations
to predict, at the time that application is made, how well ‘ahy
applicant will succeed on the job, and could select his new- Sales-
man from available applicants accordingly. W >

In general, then, whenever the coefficient of correlation between
two related traits is known for 4 sample selected for @ given popula-
tion, if we know only the z-score equivalen{\0f‘an individual in
one of these traits, we can predict (by wmeans of the regression

equations) his probable status in the géneral distribution of the
other trait, PN,

www.d braulibl'ary.m::g.in

The Raw Score Form of the Regréssion Equations
In practical work, when prédictions are to be made of one vari-
able from known values of a related variable, it is not convenient
first to transform each)of the known measures into its z-score
equivalent, then tg)}l}temu'ne (by means of the regression equa~
tions) the expectddNalue of the related z-score in the second trait,
and then in durh to transform this estimated z-score into its
equivalent.faw score valye. To save the time required for these
tra.nsfog:%'aﬁons of known raw scores into z-scores and the estimated
z-5coEés into raw scores, the predictions are usually computed
difestly from and expressed in raw score values. The raw score
Norm of the regression equations may be derived by substitut-
ing in Formulas (23) and (24) the following equivalents of 2.
and z,.
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Upon substitution of these values and simplification’ and trans-
position of terms, Formulas (24) and (25) become: ' =

X =t (V- M) +I (@6) -

yer oMy EM, e

The following examples will illustrate how these formulas are
applied. Suppose that to a given number os random samplé of
individuals in a given school population a test of general qntelli-
gence and a test of silent reading comprehension a.rqa,g!nﬁﬁis_tered.
Let us refer to the intelligence test as the X test, aBQ to the read-
ing comprehension test as the ¥’ fest. Supposetial the following
measures are derived from the dist ibutiogs\\cnf scores on these

two tests: N LY .
M, = x03; 0= 133 M, = 8405, = 95 T ™ B
Suppose then that some otber'iﬁ'..%ﬁhﬁilﬁbﬁ.mlpdpulation in

question made a score of 120 Qﬁ”tﬁe-inte]ligence test, but that he

did not take the reading test, and that we wish to estimate as
be likely to make on

accurately as possible what'score he would -
it. We could do tHisby substituting the given values in Form-
uia (27) as follows::~ S : :
N\ A\ } . . )
Y=.3 X&"(sz) — 102) + 80 = 94.4, 0T 94 {rounded value)
7\12 - R |
If Siﬂ?il’a} l;redictions were to be madel' for a large number of in-
dividuals, it would be more convenient to reduce the general ex-
\Qi'e:i'sion o :
Y= .8X£(X~—102)+86"
12 o
- to the simpler form o
' 7 = .6 X +18.8. |
Using this expression, then, if an individual_. were known to.have
made a score of go on the intelligence test, W€ would estimate

for T o soore of 6% g0+ 188 =738 on the reading test.
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Estimates of probable X scores could similarly be made from known
¥ scores, using Formula (26).

The Reliability of Prediction; The Standard Error of Estimale

In the preceding sections we have seen that when the regression
equations for two related variables have been determined for a
given group we can, by means of these equations, estimate for any
individual the probable value of one variable from a known
value of the other. Predictions based upon these regressxonf
equations, however, are never (except in the case of perfect correla-
tion) perfectly reliable.. These equations only indicate, for in-
dividuals with a given measure of one trait, wha.t is the mean of
their measures in a second trait. The agfa! measures of the
second trait for these individuals are sgat%vered on either side of
this mean, so that the estimate of the sgeond trait for any particular
individual would, seldsm.soincide oFith his actual measure of that
trait. For example, if it is knowadithat the mean weight of persons
6 fect tall is x50 pounds, theniTso pounds is the best estimale of
the weight of any particula? 'ax-iooter but we would know that his
actual weight would p@bably differ “considerably from this esti-
mate.. The rehab'li{j; of this estimate, then, would depend upon
the variability it vﬁ@ht for six-footers in general. If the actusl
weights of sur\fobters in general were known to cluster closely
around the smeéan of 150 pounds, then this mean would be a close
- approximation to the weight of any six-footer. If, on the other
hand; the actual weights of six-footers in general were known to
shgw a wide spread on either side of 150 pounds, then we could not
{“eonsider this mean as a dependable or reliable estimate of the weight
of any single individual of this height; that is, the actual weight
of the particular six-footer involved would be likely to differ con-
siderably from this estimate. 'The reliability of any prediction of
this kind would, then, depend upon the variability in weight for
“persons of the same height. More specifically, the reliability of
these estimates would depend upon, or would be measured by,
the stendard deviation of weights for persons of the same height.
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-When thus used to describe the reliability of prediction, this S.D.
“of the one variable for individuals with-a given value of another
‘ yariable is known as the standard error of estimate.  Accordingly,
‘the standard error of estimate in predicting reading test scores
from arithmetic test scores for a given group would be the S.D.
in-reading test scores for individuals (selected from the given
“ group) all of whom have the same arithmetic SCOTE. " ' \
Let us now consider some of the more jmportant characteristics
of this standard error of estimate. Suppose that we have fgasures
- of two rectilinearly related: traits, 4 ‘and B, for a givem\group of
individuals, that ¢, and o répresent the §.D’s ofldistributions
of the measures for the entire group, and that 243 Tepresents the
coefficient of correlation between these megsuires for this group.
Suppose further that from the total g;oﬁp we select a group of
“individuals all of whom have the sam:e:méasure of trait A, that we
.make up a frequency disi;r‘_ibut-iopg_".of the B measures for these
selected individuals, and that weeRREL ﬁlg;a$£érogﬁ this distribu-
“tion. Let ‘this SD. be repiesented by ¢, This expression may
be vaﬁouéljf"ihtérpretegiﬁs-“the S.D. of the B measures which
are paired with a 'ﬂ'@‘n’ value of A, or “the S.D. of B when 4
is held constant,or he standard error of estimating B from 4.”
One interssting characteristic of 5.4 is that its value, in
most cases of-fectilinear relationship, is independent of the given
{value of &), that is, of the value at which 4 is held constant. For
e?_la_n‘gi)l}:, the 5.D. of weights for adult indi\_riduals of a given height
}S&bout the same regatdless of the value of the given height. A
< group of six-footers will chow about the sane ‘variability in weight
as a group, of five-footers: . This is again equivalent to saying
that in the scatter-diagram the variability of the measures in any
-one column is about the same a5 the variability of the measures in
,any other column.on the chart. Or again, itis equivalent to saying,
_with {éféréhce'{o' Figure 18, that the “spread” of the lines drawn
from any point in the left-hand distribution is about the same-
s regardless -of the position of the point-in that distribution from
which the lines were drawn. In all of our subsequent discussions
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of the standard error of estimate, we will assume that the relation-
ship between the two variables is of this character. (This as-
sumption is frequently known as the assumption of homoscedacity.)

Another characteristic of o5, is that it is always less than
oy unless, of course, the traits are entirely unrelated, in which
case 65, is equal to 0. This is only equivalent to saying that
individuals alike with reference to one trait will be more dlike
with reference to a related trait than will individuals with differ-
ing measures of the first trait. Again, it is equivalent(te'saying,
with reference to Figure 18, that the fan-shaped pg:tiem of lines
will not spread throughout the whole distributiQxi; 'or, with refer-
ence to the scatter-diagram, that the S.D:Jf)measures in any
one column is less than the 5.D. of meqmrcs for all columns
combined.. {

Another significant characteristig, of 5.4 is the fact that its

ratio to o, th&t@ﬂb&hﬁ]jﬁtg?y é,rg.mﬂl be large if the correlation
O3S F

between 4 and B is low, and ‘will be small if the correlation is
high. It can be shown/that this ratio bears a definite relation-
ship to r,,, as fo]lovcgr}

R T (28)
R
Similarly: M\
\ G::B Vi — 1 (29)
A

We an note at once that these algebraic expressions are en-

) tirely consistent with what has just been said. If r,, equals

o~
\

. Opg
zero, then the ratio -f becomes equal to r.00, that is, 54 be-
B :

A

comes equal to o, If r,, equals 1.00, then —24 e equals zero,
L

which means that o, equals zero, or that individuals alike in 4

are also all exactly alike in B.  Similarly, if r,;, = .8, then

05, .

—;’—‘ = V1 - .8 = .6, which means that o,, is .6 or 60 per
B _ _ .

cent as large as op. '
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Muitiplying both sides of Equation (28) by ox and canceling
s, in the left-hand term, we get the following formula for the
standard error of estimate (in estimating B from A). '

Tps = s Vi—r1i . _ - (30)
Similatly, the standard error of estimating 4 from B is
. ~
Tpz =04 V1 -1 (@1)

The following illustrations will indicate how these formulds dre
applied. Suppose that for a given group of adults the cogfficient
of correlation between height and weight is £y = 05 iifé.'t Fr=3
inches, o = 12 Ibs., that the means in height and weight for the en-
tire group are 69 inches and 145 Ibs., respectively By means of the
raw score form of the regression equation {Bquation 26 or 27), it
could then be shown that the best estimate of the weight of an
individual who is 72 inches tall would Bexsz2.2Ibs. The reliability
of t}xis .e.stima,te, as we bave @@g}}g{ﬁg&%ig@l{]’)ﬁl drepﬁ?d upon the
variahility (standard deviatiop)™in weight of 411 persons (in the
given group) who are 72.inéhe's tall. This standard deviation

according to Formula (30?401' (31)is , :
Oy = ‘TW& I — "%FH = 12‘\/1 - .0t = 96 1bs.

This standardseeter of estimate may be interpreted in much the
ted the standard error

same fashiomiaswe have previously interpre

of the me\‘{n"in sampling error theory. Assuming that the distribu-
tion 0i~?tv\~eights for a large number of persons 72 inches tall would
?ppl'i.iximate the form of the normal curve, we may say that ap-

$roximately 68 per cent of all persons of this height will be within -
0.6 1bs. of the mean weight (152.2 Ibs) of all persons of this height.
We may say, then, that the chances are about 68 out of 100 that
the actual weight of any oné individual of this height - is within
1bs.) that we can make of his

0.6 lbs. of the best estimate (152.2 ve can
weight. Again applying the known area relationships under the
normal curve, we may say that +he chances are g5 out of 100 that

the actual weight of this individual is within two st.a.ndard €170
of the estimate; that is, the chapces are about g5 out of 100
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of the standard error of estimate, we will assume that the relation-
ship between the two variables is of this character. (This as-
sumption is frequently known as the assumption of homoscedacity.)
Another characteristic of ¢,, is that it is always less than
oy unless, of course, the traits are entirely unrelated, in which
case gy, is equal to o, This is only equivalent to saying that
individuals alike with reference to one trait will be more alike
with reference to a related trait than will individuals with differ-
ing measures of the first trait. Again, it is equivalent{to3aying,
with reference to Figure 18, that the fan-shaped pattern of lines
will not spread throughout the whole distributiod, of, with refer-
ence to the scatter-diagram, that the S.D. of measures in any
one column is less than the S.D. of measures for all columns
combined. AN
Another significant characteristig..t@f"as,d is the fact that its
ratio to o5, t\b&‘iﬂl rtg}“ ?»g}_(g/%é:gyﬂ] be large if the correlation
between 4 and B is iow, a.ndwﬂl be small if the correlation is -
high. - It can be shown that this ratio bears a definite relation-
ship to 7,5, as follows: 2\

z*x\ Y84 _ /%
\’\u "_—O’B = I — fjs (28)
Similarly: ¢
‘ :\ Uiz '= ZI__——-_ ,:B_ (29)
\ Gy ’

We\gﬁy note at once that these algebraic expressions are en-
tirely, consistent with what has just been said. If 7.5 equals

£\ . Ug .
~\zero, then the ratio —f becomes equal to 1.00, that is, a5, be-
) 2 B : B

comes equal to o5 If 7,, equals 1.00, then 224 equals zero,
Gg

which means that oy, equals zero, or that individuals alike in 4

are also all exactly alike in B. Similarly,. if #,, = .8, then

b7 ViIi— .8 = 6 whi;h means that o,, is .6 or 60 per

Tg
cent as large as ¢p.
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Muitiplying both sides of Equation (28‘} by o, dnd canceling
o in the left-hand term, we get the following formula for the
standard error of estimate (in estimating B from A). ;

Ops = Tp '\/1 — 75 _ _ o _(30)
Similarly, the standard error of estimating A from B is o
Fap = T4 Vi-—fis (31)¢

The following illustrations will indicate how these fomﬂqﬁ\afp-
applied. Suppose that for a given group of adults the coeiEﬁciént
of correlation between height and weight is 7y = -6, that oz = 3
inches, o, = 12 Ibs., that the means in height and weight for the en-
tire group are 69 inches and 145 Ibs., respectively: \(By means of the
raw score form of the regression equation (Egbation 26 or 27), it
could then be shown that the best estimat€ol the weight of an

individual who is 72 inches tall would be352.2 Ibs. The reliability

of this estimate, as we have aqug\gx‘ﬁg'f_gdhgmlﬂd depend upon the

variability (standard deviation) J weight & 4P Belons (in the
given group) who are 7z inches tall. This standard deviation

according to Formula (30{& (31) is

Opg = T ML Ton = 1241 — .6% = 9.6 lbs.

This standard e}'rqi:’of estimate may be interpreted in much the

same fashion a8'we have previously interpreted the standard error

of the mean jfsampling error theory. Assuming that the distribu-

tion of ykights for a large number of persons 72 inches tall would
approximate the form of the normal curve, we may say that ap-
p préx\xma,tely 68 per cent of all persons of this height will be within

9 1bs. of the mean weight (x52.2 lbs) of all pergons of this height.
68 out of roo that

We may say, then, that ithe chances are about
the actual weight of any one individual of this height is within
9.6 Ihs. of the best estimate (152.2 1bs.) that we Can make of his
weight. Again applying +he known area relationships under the
normal curve, we may say that the chances are 95 out of 1oo that
the actual weight of this individual is within two standard errors - -

of the estimate; that is, the chances are about gg out of 100 that
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his actual weight is within 19.2 Ibs. of 152.2:1bs.,, or that it is
between 171.4 1bs. and 133.0lbs. Again we may say that we dres
“practically certain® that his actual weight is within three stand- .
ard errors of his estimated weight, or that we are practically
certain that his actual weight lies somewhere between 180.8 and
123.2 Ibs. [132+ (3 X 9.6) and 152 — (3 X g.6)]. :
Q!
The Asmmptmn of Rectdzmemty
In the foregoing discussions, atiention has heen repeatedly_.\_
drawn to the fact that the Pearson product-moment \correlation
coeflicient, as well as the regressmn equations and standard errors
of estimate based upon it, is intended for use only Wwith measures
that are rectilinearly related. This fact deserves greater emphasis
than it has yet been given. I the relatmnéhlp between two sets
of measures departs markedly from reetilinearity,  not only be- -
comes a poor measumdbefutiedegred.inl relationship, but its use .
may even lead to serious misinterpreta.tions Instances may be.
found, for example, in which #="0 but in which the measures are
nevertheless very closely or*even perfectly related. Fortunately .
for the student _of statls(ws, instances of data showing markedly
curvilinear relatlolggp are relatively rare in educational and
psychological research, so rare that it is hardly worth while to -
burden the beggnning student with any consideration of the special
correlation miethods that are available for the treatment of such
data. Itissufficient for him to know that such methods do exist -
and ma} ¢ referred to if the occasion démands. It is extremely
lmgortant however, -that in all instances in which he makes use
{ 5f ¥ or of the regression equations based-upon it, the student demon-
strate conclusively that the relationship involved is at least ap-
proximately rectilinear in form. Certain mathematical tests of
rectilinearity or curvilinearity are available, but the application -
* of such tests is rarely necessary in practical work and need not be .
considered-here. The most :practicable test of rectilinearity is -
that based simply upon an inspéction of the scatter-diagram. If :
the curvilinearity is not so marked that it is net. immediately -
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gpparent upon inspection of the scatter-diagram, the student need -
- have no fear that the use of product-moment correlation tech-
- niques will lead to any serious error. It is well, therefore, to con-
- stritct a scatter-diagram whenever a correlation coefficient is to
be computed, even though the scatter-diagram is not needed in
‘the computation, as when certain machine methods of computa-
tion are employed. ~ oo R

' 4 .\' \g

. Sampling Errors in v . - PR
- T two samples of the same size were selected strictly at random
- from the same population and a scatter-diagram shiowing the
-~ telationship between the measures of two given j:xé.itﬁ' were pre-
. pared for each sa.mple, we would almost invariably find that the
distribution of the tally marks would not be-esdctly the same for
both samples. The operation of chance ip-selecting the individuals
_constituting each sample would practically guarantee differences
in these scatter-diagrams.. .Tha@uﬁ:ﬁﬁimm-ﬁ%}i%_moducﬁ and
hence the value of 7, would thezefore differ somewhat for the two
. samples. The r for either samﬁle could therefore not be taken as
 aperfectly reliable indication of the that would be obtained if the
" entire population w o oonsidered. Ifa large number of random
. samples of the sara,size Were selected from the population, very
~few. samples"wotﬂ&’ show the same 7 as any other. These obtained
's would be “distributed on either gide of the true ¢, and (if the
~true r'w fe)not too high). the form of this distribution would be
- that ofithe norinal curve. . The standard deviation of this distribu-

- tjofimiay be shown te be: .
"9 o -7 -

. aTJN .

in which the # represents the i€ 7 for-the population and NV the

number of cases in each sample- 1f this standard deviation is

small, that is, if all obtained r’s cluster dosely around them r.
then the r obtained from any single sample is, of course, unlikely

to_deviate far from the truef, and may be accepted as a close.

apprbxiniatidn to it. If this standard deviation is large, then
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the r for any one sample is likely to differ considerably from the true -
7, that is, it is likely to contain a large sampling error and must be
considered as unreliable. This standard deviation is therefore a
measure of the reliability of the r for a single sample, and is known
as the “standard error of ».” For a large sample drawn from a
population in which the true » does not closely approach 1.00, the
sampling distribution of # is approximately normal. When the
true 7 is high, the distribution of obtained r’s is markedly skewed,
even though the samples are large. The reason for thig\isreadily
apparent. Suppose, for example, that a large number of random
samples are drawn at random from a population for which the true
r is .96, and that the obtained r is independently computed for
each sample. Obviously, none of the satple s could deviate
from the true 7 by more than .o4 in one’direction, while sampling

~errors very much larger than this coul&* readily occur in the other
direction. The result would be a sa.:rnphng distribution markedly
skewed to the"]é& ﬁdbl%ﬂgb%ﬁhe;gt]ﬂe sample, the more extreme
the skew.

Accordingly, it is only ‘fur Ia.rge random samples in which the
obtained 7 is low or ol moderately high that one may interpret
the standard erroref'wwith the aid of Table 17. With what maxi-
mum value of #’the'standard error may safely be thus interpreted
depends upen(the size of the sample. A safe rule to follow is never
to use Formtula (32) at all with small samples (say, N < 60), and to
use it\With large samples only if the obtained r is less than .8o.
(If the sa:mple Is very large, consisting of several hundred cases,
ﬂqe formula and Table 17 may perhaps be safely used for r's as
“Nlarge as .9.) Other techniques, beyond the scope of this course, for
dealing with small samples and high #’s are elsewhere available.*

For samples that satisfy the preceding conditions, the standard
etror of # may be interpreted in much the same fashion as the
standard error of the/mean (see pages 106~123). Suppose, for ex-
ample, that the correlation between x and y is rey= .00 for a

* See Lindquist, E. F., Statistical Anolysis in Edmahaml Rescarc 310-218.
Houghtcn Miffiin Compa.ny, 1940,  pp-
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given random sample of 100 cases. To compute the standard
error of this r by means of Formula (32); we should know the
value of the true 7 for the population concerned.  Not knowing
this, we substitute for the true 7 in the formula the obtained r
from our sample and thus secure a useful approximation * to the
standard error desired, as follows: :

o= —fz___I_:fj:.oﬁ"_.

This means that if #’s were similarly obtained from a Jargémum-
ber of random samples of 100 cases each, these obtained 7 would
fall into an approximately normal distribution with.d standard de-
viation of approximately o064, About 95 pet\eent of these r's
would then le within .c64 X 1.96= .125 of sthe/true 7. Accord-
ingly,* we may be confident at the 5 Peg eent level that the true
s lies somewhere between .60 — 125 = (3% and .60 + .125= .725:
Similarly, the 2 per cent confidesceninerrad fo5 S, THS 7 is equal
to .60 x (0.64 X 2.33) OT 45T tol74, and the 1 per cent confidence
interval is .435 to 765 N : '

Suppose, now, that fqr...g certain population the true 7 between
x and y is zero. For'@yr +andom sample drawn from this popula-

tion, we could, ne\:rertheless,. hardly expect (because of chance

fluctuations) that-the sum of the positive z-score products would

exactly cancelthe sum of the negative 2-5core products. In other
words, the-# obtained from the sample would almost certainly
differ£xom zero. For example, while the true correlation between

’he?g',l’l’t' and intelligence for a.given population of adults might be

welo, in any particular random sample from this population we

might by chance find that the tall individuals are, on the average,

slightly more intelligent than the short individuals. In another

s Because of this substitution, this procedure will yield a c'losé a.pl:{roximation to
the stamdard erTor of the obtained » only when that 7 is itsclf bighly reliable. Hence,
this is an added reason for not using Formula (32) with small gamples.

1 Strictly, for reasons similar to those explained on page 127 the procedure here
mggested is inexact and somewhat biased. An exact procedure for ﬁtthsh_ms con-
fidence intervals for 7' of any size and for samples of any siz¢ 18 described in Lind-
quist’s Statistical Apalysis 0 Educabiont} Research, pp. 211214
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sample, again by pure chance, the reverse might be found. The.
fact that a correlation not equal to zero is obtained for a sample, .
therefore, does not constitute conclusive evidence that a true r-
other than zero exists for the whole population. Before accepting .
an obtained r as evidence of a real relationship, we must show that
it cannot reasonably be accounted for by chance fluctuations in .
random sampling. O

If the true » for a given popula.tlon is zero, then accordmg to
Formula (32) the S.D. of obtained ’s for alarge number of\random
samples of N cases each will be .

. I - 02 .‘\' 4
A

I, then, a sample of N cases is drawn ayra.ndom from a certam :
populationand the obtained r is found ‘toexceed 2. 58/V'N N, we may .
be confident at e P& lc’:légfafé{zé)f §R4t the true 7 is greater than
zero, or that the obtained 7 does not represent a chance deviation

from a true r of o.c0. InnotElér words, an obtained 7 greater than

2.58/V'N is signjﬁca.nt a\t the 1 per cent level. Similarly, an r is
significant at the 2\29@ cent level if it exceeds 2.33/ \/_ N or at the -
5 per cent level if it exceeds 1.96/ V'H. X
Suppose, then that we selected a sample of 100 cases from a -
popula.tmn for which the true 7 between two variables is unknown °
and ﬁnd\’that for this sample the obtained r is .24. We could then’”
be confident at the 2 per cent level that the true r for this popu]a-
_tion 1s %o zero; in other words, we could be confident at the 2 per -
 cerit Tevel that there is some relationship'bétween these variables -
as'far as the entire population is concerned. ~ On the other hand, if -
the obtained # had been .13, the hypothesis woild be quite tenable
© that the true # for the population is o.0, and that the obtained
of 15 is entirely due to chance fluctuations in random sampling.. '

- For the convenience of the student in determining whether of
not:an obtamed riis’ stahstlca,lly ‘significint and ‘at What level,
Table 21 has been prepared. This table shows the maximum:.
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value of # that is required-for significance’ at gach: of the three:
commonly employed levels of: significance. - For example; .an:£:
obtained from'a sample of 125 cases must exceed .175.to-be signifi-
cant at the 5 per cent level, .208 to be significant at-the 2 ger cent
level, and .230 to be 51gn1ﬁcant at the 1 per eent level S e AL

TABI.E 2t
Mo VA.I.UES ‘oF CORRELATION CORFFICIENT REQUIRED FOR
SIGNIFICANCE AT VARIOUS LEVELS FOR VARIOUS' SizE, OF-SAMPLES .

Co ' T . * Level of Coﬁfldenée et D
Number of Cases (¥). 8% L 2%
gg S ey o BB R '3,3.—;* ST ¥
. .253 . « 300 R ‘3 A
'70 . '234.-:' B .278 i . ;3&{:_- oy
B . a2T9. - abo . anaBB
o 2o gt .\_:._'271 L
100 296 I R
125 T LITS. ; 208, N L230
S £ SIS (- SRS LIGRN T E11-
-.175 .. .48 a7 . 219 -
200 a0 wib4 o igBe
250, 134 .WWW abi‘ﬂlhbnary olgf%
oo LI13 &N .
400 i REF~ - SEba S S ;116 A< £ L. R !
T . o4 o . -3ES
."'ICDO: .061"”" s ! ! .O7I . AN :

f.' \dlﬁerenw between rs obtalnet;l from 111—

dependent, ra.ndom P _
fashion as a dlﬁerence in means
the #’s are not\lngh, & cl,ese ApPIOX - ary
of the di nce may be__ obtamed by substltu _\ng Jhe 8
etyors oi the separate 7’s in. Formula (x 5) be

diffefence and its stend.a;d €rTor Iay. then I 3
of, Table 17. Tt is very. nnportant to no e__that_,_ t]:us procedure

isnot valid, in genera] if the 7’s belng Compared are both obtamed
from the same- sample n : '
Inﬂmme of the. Variability of Measures upon tke u agmzude of 7
“Tf, it a'study’of the’ telationship between ‘measures of two tralts;”
we-selectéd’ two-grouips of ind dividuals such that- one group showed:
greater variability in these measures than .the other, - We would,
find that, the..vcgeﬁiegen_t_ of, correlatlon 7. between, the measu:es
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would be greater for the more variable than for the more homo-
geneous group. Suppose, for example, that we administered a
reading test and an arithmetic test to a group of sixth grade
pupils, and that the oval marked “VI” in Figure 20 represents
the pattern of the tally marks for these scoreson a scatter-diagram.
That is, this oval might contain all of the larger cell frequencies,
although a few scattered tally marks might lie outside this oyal.

- This, then, would represent only a “moderately high” positive

correlation, since the oval is so broad in proportion to ij:\s'iehgth,
that is, since the variability of the measures in any singlé column
(or row) would be only slightly less than the varability of the
measures in all columns. (or rows) combined fof_the entire sixth
grade group.” Now suppose that we administered the same tests
to a group of seventh grade pupils. Ahese pupils would, in
general, earn higher scores than the siftl graders on both tests,
and the pattern \3\& ' f;h:; tally %_rkfﬂ when plotted on the same
scatter-diagram, might be represgm?ed by the oval marked “VIL”
Similarly, ovals IV, V and VIII might represent the patterns of
tally marks, plotted on thelsame scatter-diagram, for groups of
fourth, fifth and eighth géaders, respectively. Again we may note,
so far as any one of thése groups alone is concerned, that the rela-
tionship is only {nﬁ&‘erately high, since in each case the oval is
short and broad.\.However, when we consider all groups together,
we note that\afi oval including all of the larger cell frequencies
would be.quite narrow in proportion to its length. We would
there{@ét@ect the coefficient of correlation between these scores
to be\considerably higher for the total group (all grades) than for

‘tj}ém (or any other) grade group alone. TIn one sense, how-

* That is to say, o, (the standard deviation of the measures in column ) would be
almost 25 large as o, (the standard deviation of reading scores for a¥f sixth graded}.
. * The standard deviation of the measures in any column (such as colamm ‘C)
would be quite small in proportion to the standard deviation (o7} of the reeasurcd

from ail columns for the combined groups. It follows, then, that ? wouli fher con-
T

. o . )
siderably smaller than _;——;' From this it follows (see Formula (28)) that the vorrela-

v - . .
tiom, rey, would be considerably larger for the heterpgeneous total group than forthe
~morr homogeneons. sixth grade group,
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ever, the real degree of relationship is the some in either case,
since the reliability of estimate (which depends upon the standard
deviation of the measures in individual rows or ‘columns) is the
same whether we consider the sixth grade alone or all grades com-

bined.

Arithmetic

Reading

’ ‘\ : Fii. 20-
'\~ .Showing influence of range of talent upon £-

T,h!?'}uagnitude of the coefficient
ures 'of two traits for 3 given group .
\\za“,ria.bility of these measures for the given group,, |
idea is frequently expressed, it will depend upon the “range of
talent” of the group- The co

same two traits may therefore have oné magnitude for one group

of individuals, and quite a different magnitude for still another
ingful to speak of

group. It follows from this that it is not meani pak
#he correlation between any two traits, apart from any descrption
_of the group for which the correlation is determined. - Statements

of correlation: between meas-
will .then depend upon the
or, as the same
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suach as, “The correlation between height and weight is .52,” or
“There is only a low correlation between intelligence and spelling
ability,” are therefore indicative of loose thinking. Such state-
ments- should afways be accompanied by a description of -the
particular group involved, including a description of its varia-
bility in the measures concerned. To say, for example, that the
correlation between achievement in two school subjects is .bo for
a group of fifth grade pupils is quite another thing than to say that
it is .60 for a group which includes pupils from all grad\e’sﬁ’om the
first to the eighth. Comparisons of the closeness of\selationship
should therefore not be based on comparisons of #'s unless they
are established for groups that are at least approximately alike in
“range of talent.” - N\
: AN
The Meaning of ¢ Given Value of r L ° ~
We have already noted that whilevthe coefficient of correlation
7 (because of the lbratdiR¥s 888 on page 150) is a convenient
ndex of relationship; it may’hbi: be considered as dérectly propor-
tional to the degree of relationship. A coefficient of correlation of
8o, for example, may{hot be said to represent exactly twice as
close a relationship a@s{one of .40, even though both are established
for the same range.of talent. 'To be able to make such a statement,
we would hayeto be able to describe, independently of 7, just
exactly whiat we mean by closeness. of or degree of relationship,
and n9.§uEh description or definition that is generally acceptable
) ha's'}@: ‘been proposed. - Because of our inability to define “degree
‘oftelationship;” we are unable to state in general how 7 changes

G value for given changes in. that degree.

It may be well to remind ourselves that 7, after all, is simply
“one of a number of equally arbitrary mathematical procedures
which,_ when applied to sets of related measures, will yield a single
" number somehow indicative of the degree of relationship. The
coeflicient of correlation r is based on z-score products; other in-
dices could be derived from differences in z-scores for the individuals
- goncerned, or from the ratios between their z-scores, or from the
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squared differences in z-scores, OF from similar measures based on
percentiles and ranks, and so on almost without limit. - Few of
these other indices would have the characteristics that would:make:
‘them -as convendent to-use and interpret as 7, but which of thenis.
most. nearly linearly ® related to the. degree. of relationship we
cannot say, since this would depend upon how we defined: degree
of relationship. For the same reason we cannot say in general '
that » is -any betier than maany other available indices. in, this
regard. : e Y
Numerous schemes and devices have nevertheless beenstuggested
to assist the student of statistics to appre! iate the sighifitance of &
given value of 7. Some of these devices are quite Helpful in‘certain
restricted types of situations, but all of ‘thea\may -be ‘seriously
misleading in other sityations or in general,*\%i.xta}i must be used with:
extreme caution. SNV T
One ofthe most common and mqst’~mislea‘.diﬁg of these practices.
has been that of classifying r’s.bff’?ééﬁﬁﬁi%wﬁlﬂgh;” “mes
dium,” and “low.” For exaumiple, an 7 of .30-0rless has been said’
to'be “low,” one of from Acto .70 «medium,” one:of from 7o to
.06 “high,” and one { above o fivery high.” .. The numerical
values of # corresponehiﬁg:tb each of these categoriesthas; of course,.
differed for 'va;Iist*- tlagsifiers. - Such anssiﬁ_cations are--inva;ria'EﬂY "
misleading, sigf:e what constitutes a “high” ora “low” \eorrelg.tlon-
is 2 relative ‘matter, and differs markedly for different types-of:
situatigns: Coefficients of correlal fon ‘of as high as.5o-between.
mf;agil’i’es of a physical and 2 mental trait are extremely rare, and
(@'¢otrelation of .6o between two such trhits would be considered
e oheemally igh for alniost any group: Comdldtons of P2

magnitude between reliable ‘measures of twe ::::ri;_enﬁél. _:t;r_z'g,_its_',.;h()w—_
ever, dre Guite common; and i this Instattce would be considered
as only medium for most populations in. Wh.igh we are; mtercstefi_.,
Agiiin, & correlation of .go between twWO mdependent measures of
.-.,I-.' A _ T ,‘ el ‘ . Vﬂiued\

35 Two varinhles are linearly related if-a given amount of cha.nge in the valye ol
ong:iy always ecompanied by 'a constant a.moun}*ofdnnge in. thﬂ."--!l;\.l‘.le_.d"- .
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the some mental trait — for example, between the scores on two
equivalent tests of spelling ability ' — might be considered as only
medium or low, particularly if the tests were very long and com-
prebensive. In this situation, an r of .60 would be considered as
extremely low. There is no single classification, then, that is
applicable in all situations, and because of the danger that they
will be applied in situations in which they are not valid, it is best
that any and all such classifications be disregarded entirely By fhe
beginning student.? O

Another device for the interpretation of 7 is that which is con-
cerned with the improvement over a “best guessj’:in predictions
based on the regression equations. Suppose for example, that
an individual is selected at random from a)given group whose
mean and standard deviation of a given.@e\asure (X) are M, and
o, tespectively. The “best guess” 3bat we could make of this
individual’s x vmeastiemioubdythefibe 3, and the “standard
error” of this guess or estimateqgould be o,. Suppose, however,
that we knew the measure of another trait (¥) for this individual,
and that variables X an ¥ were rectilinearly related for the
group in question. W6}ould then, by means of the appropriate
regression equationj\make a better estimate than before of this
individual's « ’m.éasure.' The standard error of this estimate
would be o, :=~\tr,, V- #%,. The difference between this latter
standard etror and the first, that is, the reduction or improvement
in thg\sﬁndard error of estimate, would then be

al

AN e, VI1—1y,

) Tn this ease the correlation coefficient would also be the coefficient of reliability-
a The student will have noted that the adjectives “high,” “low,” and “medium ”
have been applied several times in this chapter to correlation coefficients and de-
grees of correlation. This may appear inconsistent with what has just been said.
These adjectives, however, have been used to refer only to the absolute Ina.ﬂltﬁlilarﬁ"zal
magnitude of the correlation coefiicient; that is, a high correlation in these discus-
stons means one high up along the scale of possible valze (near 1.00), a low -oorl'el':’-'
tion means one hear zero, and a medium correlation means one near .50. Used in
this sense, “high" does not imply “important” or “consequential,” nor does “low”
mean “of no importance” or “of no consequence.” 'The student mnst distinguish
carefully between this use of these adjectives and their use in interpretation or’ evalu-
ation of correlation coefficients.

N
£
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This expression could be expressed as a per cent of o, (the standé.rd
error of a “best guess”) by dividing by o, and multiplying by

100, as follows
'0',—0',‘\/1—1':, '
00 --:100(1_ 1 —7
a’l

I, then, the coefficient of correlation between X and ¥ were
t,, = .80, the standard error of an estimate based on the regression /
equation would be less than the standard error of a best guess by
an amount equal to 40 per cent of the latter. An? of .6o, similarly}
would represent a 20 per cent improvement over a best *éuess.
The nature of the relationship between 7 and this pei'"éént im-
provement over a best guess is shown in Figure 24, “From this
figure we note, for example, that an 7 of .50 represénfs an improve-
ment of about 14 per cent over a best guessy that an ¢ of .86 rep-
resents a so per cent improvement, ety W see, then, that the
reduction in the standard error of estifaate remains small and in-
creases very slowly for low valwesvoftbrand tthatymoazked improve-
ments come only with very hight wdlues of r. For the purposes of
prediction, then, an r of .49 & not much better than an r of o,
while the difference between an 7 of .80 and one of .go is very

een an r of .50 and one of .6o.

much greater than be{ﬁ'&f
Figure 21 is quife helpful in the interpretation of r’s used for

purposes of predicion, but, like all other devices of this type, may
be seriously/misleading when applied in other situations. It
would bé'a grave mistake, for example, to reason that, because an
r of .40s very little better than anr of ¢ in prediction, it is there-

Githations. An r of .40 between measures
a given group might have very important implications to the educa-
tional psychologist with reference to a theory of learning, even

though it would be practically uscless in estimating the measure

of one trait from that of another for any individual. o

Many other devices for the interpretation of r have been sug-

gested in the literature of educa ion and psychology. Except
when used by persons highly trained ip statistics, however, all
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.of :these.--::devices..:.are .:mo;e"]ﬂiely to bef misleading' or COHquiUE
‘thanhelpful. - It is therefore recommended ‘that ‘the beginning
student in. statish%\inake To attempt to arrive at any absolute
intérpretation ofw, - He should look upon it simply as an arbitrarily
‘selected. index( which. happens to be indicative of (although not
linearly-related to):the degree of relationship. * When coraparing
s of {fferen‘t magnitude, he should avoid trying to estimate
“‘howntich”.closer the relationship is in one case than in anothet,
bu\t should:-be-content with the knowledge that there is a diffef-
_eiite ‘of some indeterminate amount. He should be careful,-also,
‘never to compare:7’s except when the relationships are known to
‘be rectilinear and when the: groups involved are comparable-in
“range of talent,” -and should take sampling errors into considera~
tion in all such comparisons.: If he wishes to sécure a mare
definite netion of what an #.of a given magnitude really means,
be can do-no:better than to study the distribution of the tally
marks on the scatter-diagram from which it is computed.
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Causal vs. Casual Relationship

One other very important admonition remains to be made.
No more serious blunder in the interpretation of correlation
coefiicients can be made than that of assuming that the correla-
tion between two traits is a measure of the extent to which an
individual’s status in one trait is caused by or due to his status in .
the other. Tt is indefensible, for example, to argue that, be-
cause a high correlation exists between measures of silent reading
comprehension and arithmetic-problem-solving ability for the(in:
dividuals in a given group, problem solving is therefore defiendent
upon reading comprehension or vige verse, O that a given-student
does well in arithmetic becanse he is a good reader: AN of this
may be true, but it does not necessarily follow frorn the statistical
evidence of correlation. RN ;

The observed correlation between meas res of two traits is
sometimes due to a cause-and-effect i‘auti‘ii;nsl‘lip between them,
but there is nothing in the statistica G ence-td Tidicate which
is the cause and which the eﬁegj;:_ﬁ’f For example, there is a fairly
high correlation between ageland grade status of elementary
school children. In this caSe we know, of course, that we cannot
increase a pupil's age ,si;:n})ly by promoting him from one grade
to the next — that ‘a@s\is not due to grade status — but we know
this because of logieé,l'conside:ations which are quite independent
of the statistidabcorrelation.

Again, corfelations are sometimes observed between traits that
have ng"e\aﬁse—and-eﬁect connection whatever, the observed corre-
lationbeing due entirely to a third factor (or several factors)
Wh:lcil is {or are) related to each of the traits in question. F:OI'
exhmple, there is a positive correlation for the general population
between ages of mothers at partu ition and  the intelligence of
their offspring, but this is because Wwomen of high intellectual
standards and ability tend, for economic and cultural reasons,
to be married later in life, and not because middie age isth.e best
time to bear intelligent children. Again, however, we armive at
this interpretation on the basis of logic. which is quite mc}epend-
ent of the direction or magnitude of the observed correlation.

£
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Finally, the observed correlation between two traits may some-
times be in just the opposite direction from a cause-and-efiect
relationship which really exists. For example, in almost any high
school or college course there is a negative correlation (of usually
about —.30) between grades earned and number of hours spent in
study. The students who make the highest grades are in gengral
those who spend the least time studying, while those who,make
low grades in general spend more than the average amount oftime
in study. It would obviously be absurd, however, to,contend on
the basis of this evidence that anyone can make h;g‘her grades by
studying less. The negative correlation is largely, due to the fact
that intelligence is positively related to grddes and negatively
related to time spent in studying — thatythe less able students
must study more to even approach, though not equal, the achieve-
ments of their more able classmates{ ) The causal connection be-
tween grades earnedbwnd; g ;ﬁfgeni in study is pos1t1ve, even
though the observed correlatiom1s negative.

Whenever a significant "cci’rrelatlon is found between two sets of
measures, there are alwdys the possibilities: (z) that there is #o
cause-and-effect conneetion; (5) that a cause-and-effect connection
is present in thedsatne direction as the observed correlation; (¢)
that there is ’a&'éaﬁse-and—effect connection, but in the opposite
direction from’the observed correlation. Which of these possi-
bilities ﬁx?sts, and what is the strength of the cause-and-effect
conneétion (if any) cannot be determined from the observed correla-
ﬁ{??(.: \* Any interpretations concerning cause and effect must be
{'based on logical considerations, not based on the ohserved corre-
lation, The observed correlation may swggest a cause-and-effect
relationship, but can never prove that it exists, or show in what
degree it exists.



CHAPTER Xi

CORRELATION TECHNIQUES APPLIED IN
THE EVALUATION OF TEST MATERIALS

A VERY large proportion of all educdtional and psychological
research takes as its basic data the measures of scores obtained /
through educational and psychological tests, such as intelligence
tests, tests of educational achievement, tests of special aptiﬁ.iﬁéé
and abilities, and scales for rating personality traits. _\The. de-
pendability and meaningfulness of any conclusions dia{irn from
such research must, of course, depend upon the depéndabi]ity and
meaningfulness of the original data upon which\the conclusions
are based. Obvious as this staternent may*s}ém, it expresses a
truth which has been very frequently neglacted in past research.
Investigators in education anvgwgsi}fﬂbl}? / have tended to be
seriously uncritical of their origi;:ei,_jcfataf "HHeY Sillve too often
taken it for granted that educational and psychological tests
really measure the things which the titles of the tests imply that
they measure. They i;etiilently have allowed themselves to be-
come overly intrigut (With statistical techniques for their own
sake, and to becofde s0 impressed by the method or lechnique of
analysis employed as to overlook the lack of meaning in the data
analyzed.  Thé “jingle fallacy” — the mistake of failing to dis-
tinguish‘@iefween the name of a thing and the true nature of the
thingdimed, of failing to differentiate between the name of a test
and'that which it actually easures — has characterized many

) ref)orts of educational and psychologi_cal research.

If, then, the student of statistics in education and psychology
is to develop a sound statistical judgment, it is essential that he
acquire a thorough appreciation of the limitations of the original
data with which he will have to work, It is exiremely important
that he recognize how scriously measures of mental traits® are

* The term “trait,” as used in this discussioz, s broadly defined to include skills,
abilitics, aptitudes, attitudes, and educational achievements.
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characterized by ambiguity and error, and how inadequately we
are able to control these errors or to describe their nature and mag-
nitude by means of available statistical and research techniques.
The purpose of the following discussion, accordingly, is to develop
in the student a better appreciation of the nature of measurement
in education and psychology.

Q"

THE NATURE OF MEASUREMENT IN EDUCATION.AND -
PSYCHOLOGY )

Mental traits or abilities, unlike height and wpight,o ate intangt-
ble in character and, in general, can be measured only indirectly
in terms of theirmanifestations in the overt hehavior of individuals.
Let us consider, for example, the nature/df'a test of general intel-
ligence. The measurement of “gefieral intelligence” consists
essentially of notin Jow many oft a number of selected mental
tasks of varyfﬂvgﬂglﬁgﬁtly T;ﬁbfhdigiridual can complete successfully
under certain standard condit{éﬁs. To construct such a test, the
test author would first make a collection of problems, puzzles,
questions, or other mental tasks each of which, in his opinion or
in the opinion of Q{h\‘ertcompetent observers, requires the exercise

of intelligence. MHe would try to include a variety of types of
tasks involving’various aspects of general intelligence, and would
attempt to-secure a wide range in difficulty, including some tasks
intended 6" test the very stupid and some to challenge the very
_intguﬁghnt individuals. He might then administer these potential
testitems experimentally to a group of individuals, some of whom
(v generally considered to be “bright ”” and some to be dull mentally.
He would then discard any item not successfully completed by a
larger proportion of bright than of dull individuals, since such
items would not contribute to the purpose of the whole test, which
is to reveal differences in intelligence. On the basis of the as-
sumption that mental ability increases with chronological age, he
might also discard any items which do not show an increasing pro-
"portion of successes at succeeding age levels. He would then
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assemble the remaining tasks or items into a “test,” in which the
person tested is to be given one point of credit for each task
completed. He would then devise a set of standard directions for
administering the test, and finally would administer it to a large
and representative group of individuals for the purpose of estab-
lishing “norms” of performance in terms of which mental ages
could be computed. \

The important thing to note about this whole procedure is that
at 1o stage in the process, either in making the original selettion
of tasks or in their final assembly into a “test,”. would',{cfie test
author be able to describe exacily what he means by general in-
telligence. Certainly, no test author has yet been able to provide
a meaningful definition which has proved entizely acceptable to
other equally competent psychologists. He)can only claim for
his test that it does, on a more objectivey "rﬁ_iable, and comparable
basis, what each of us does when. werehibjeciiyelyy satimate the
intelligence of our acquaintances ,b};:ﬁoting what things they are
able to do. In the last analysis) the only unambiguous definition
of general intelligence is that it'is what is measured by a general
intelligence test.. Intelligute, like nearly all other mental traits,
is both defined and ﬁ\eﬁsmed in terms of the concrete situations
in which it is overtlyymanifested.” ' '

It should be appé.i-ent from the foregoing discussion that the.
number of heliavior situations in which any given mental trait or-
ability may-/manifest itself is almost unlimited. There is no
practicallimit, for example, to the pumber of. mental tasks which-
might, be employed in the construction of a general intelligence
fest) or to the number of different problems which might be de-
vised for use in a test of arithmetic reasoning. These behavior
situations, furthermore, are in general quite complex; that is,

eral intelligence test does not

* The description here given of the nature of a gen
he > in which attempts have been’

do justice to the most Tecent work in mental testing, Ipts,
made to identify the basic “factors ™ in general intelfigence thmugh ob]ect_we, mathe-
matical analyses of test data.  This description, however, 15 In all essential respects
valid with reference to most existing tests of ““general”’ mte!hgce, as well as to-
available tests of other more specific mental abilities and aptitudes and to tests of_
educational achievemsnt. ’ ) : s
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the individual’s behavior in any one of them may depend upon
many other traits and abilities than the one in which we are in-
terested. The individual’s score on an arithmetic reasoning test,
for example, might depend in part upon his understanding of the
vernacular in which the problems were stated, upon his rates of
reading and writing, upon his ability to follow the directions fox
taking the test, and upon many other factors, some of which may
be quite irrelevant to his ability in arithmetic reasoning. (Situa-
tions representing a ‘‘pure” manifestation of any single, trait in
isolation are virtually impossible to find. Most of-the traits in
which we are interested, furthermore, are in themiselves quite
complex in character; that is, they may consist@f combinations or
hierarchies of still simpler skills and abilitiess® Ability in arith-
metic, for instance, consists, among otHer things, of ability in
addition, in subtraction, and in multiphcation, while ability in
addition of wholes ithmblits-mayrrob-be identical with ability in
addition of fractions or of denq;ﬂj}late numbers, and even ability
in addition of whole numbergniay be further analyzed into other
simpler skills, resting ﬁ;}alfjr' upon the 1oo basic addition facts
(the possible combinatious of two one-digit numbers). Not only
are nearly all traits jgbilities and achievements measured by educa-
tors or psychologists of this complex type, but for few if any of
them do authazfiiiés agree upon the nature and relative significance
of the elel}}qﬁts constituting the complex total.

Al Mé&wemem Involves Sampling
/Ahe definition of any mental trait, then, involves the identi-
{ figation ot description of situations or types of situations in which
an individual’s behavior is partly or primarily dependent upon the
amount of the given trait which he possesses. Since the number
of such situations is practically unlimited, the measurement of the
trait involves the selection of a semple of these situations — a sam-
ple small enough to make it practicable for us to observe the in-
dividual’s behavior in each situation. Ideally, the sample of
situations used for the measurement of the individuals in any
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given group should, for fairly obvious reasons, satisfy each of the
following conditions. - '

1. The sample must be representative of all the various types of
situations in which the trait may he manifested, or of all
the various elements constituting the complex total trait, or
of all the various aspects of that trait. '

For example, an adequate test of general ability or achieve- {
ment in arithmetic must centain‘séome problems in addition,
some in multiplication, some in subtraction, etc., and anfong
the problems in addition there must be some in addition of
whole numbers, some in addition of decimals, andssome in
addition of denominate numbers, while among-thé problems
in addition of denominate numbers differéuit” types of de-
nominate numbers and different degree;s'b} complexity must
be represented. : )

‘2. The sample must be large elwu%h)t_'o: :igld a stable or depend-
able measure of the individual’s\gencral 2Bility. _

For example, in a test of sp'é]]jng ability consisting of only
20 words, two individual® who differ in general spelling
ability might make tHe‘same score, since the small sample
of words used might’by chance contain a relatively large
proportion of the few words which the one can spell and a
relatively suiall proportion of the many that the other can
spell. - Forsimilar reasons, two persons of the same general
ability (might make markedly different scores. The Jonger
the felt, that is, the more extensive the sampling, the less
ﬁé.fiﬁus will be these chance fluctuations in obtained scores.

'é?‘:The individual’s behavior in each situation must be relatively
uninfiuenced by traits or factors irrelevant to the trait being
measured. _

For example, the usual self-administering type of general
intelligence test would not be satisfactory for mieasuring the
intelligence of a group of recent immigrants to this country,
because of the high premium placed in such tests npon know-

ledge of the English language. Again. the grade received by
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a pupil on an essay examination may depend in part upon the
legibility of his writing, or upon the speed with which he
writes, or upon his ability to infer the teacher’s intended
meaning from ambiguously stated questions, or upon his
ability to reproduce the sterotyped phrasing of the textbook,
or upon other factors not closely related to his true achieve-

~ ment in the field tested. O

4. Each situation must 7n itself differentiate between individuals

possessing different amounts of the total trait or reptesenting
different degrees of development of that trait.2\ ‘The whole
sample of situations, furthermore, must show sufficient
range of difficulty to discriminate betweemindividuals above
and below all levels of ability foundNn the group being
measured. - , \\ '
The first element in this condition‘h'a}been partially illustrated
In the description, of the manper in" which an intelligence test
author discards certain items. «\Some items in a test may not
differentiate because they aré-either too easy or too difficult, so
that all individuals tested may succeed or all may fail on the item.
If the response (whether right or wrong) to an item is identical for
all persons testedy then clearly that item cannot help to reveal
any differences Detween these individuals. Other items may be
answered différently by different iﬁdividuals, but those who re-
spond correctly may, on the average, possess the same amount
of the tofal trait as those who respond incorrectly. Certain words,
for jgéﬁnce, may be misspelled as frequently by good spellers as
by poor spellers.

{"\"To illustrate this condition further, suppose we wished to rank
a number of r5-year-old boys in the order of their ability in the
high jump. To do this, we would need a number of hurdles of-
varying heights. The range of heights required in the hurdles
used would depend upon the range of ability in the boys being

* A more adequate discussion of the differentiating power of individual test items
may be found on pages 39 . in The Construction ond Use of Achievement Exomine-
#ons, Hawkes, Lindquist, Mann and others, Houghton Miflin Co.



MENTAL MEASURES UNCERTAIN AS TO MEANING 21X

measured. A hurdle which none or which all of these boys could
jump would not help us in rasking them. Similarly, in the con-
struction of a vocabulary test for a seventh grade group, it would
be futile to include words known to afl individuals in the group or
words known to none of them, since such words obviously could
not discriminate hetween pupils (in this group) whose vocabulary
is broad or limited. Furthermore, the test must contain some(
very difficult words to discriminate between the superior and the
very superior pupils, some very easy words to discriminaté b’
tween the very inferior and the inferior pupils, and sore words of
intermediate difficulty to discriminate between pupilé at othet
levels of ability. : : ~A\*

These ideal requirements, of course, can neyer be completely
satisfied in actual test construction. A maijaBstacle to satisfy-
ing the first requirement, for example, is,the failure of authorities
to agree upon a specific and meaningfdl’analysis and description
of the trait to bé measured. “With! il wivchradalysis, it is
impossible to say when the con{:eﬁt’ of a test assigns proper weight
to or duly represents each of the constituent elements of the complex
total trait being measuredi ™ A test frequently can be made Jomg
enough to satisfy theiséeond condition, but length avails little if

the content of the Pest'is biased or if test performance is unduly

influenced by irrélevant factors, and as has already been noted,
are entirely

it is rarely possible to discover or devise situations that
free from\i{'ﬁéfevant factors.
T

Al Mental Measures Arve Uncertain as to Meaning .
{T¢should be apparent from a consideration of the preceding re

quirements that the selection of a sample of behavior-situations

(or test exercises) for the measurement of any mental trait de-

pends in large part upon arbitrary subjective opinion. For m?st
traits it would be virtually impossible to select 2 sample upon which
tative opinion could be secured.

complete agreement in ‘authoritaf ! urec
For this reason, if for no other, the measures obtained are inevi-
n very seriously so. 'This

tably ambiguous to some degree, and ofte
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ambiguity is accentuated by the character of the process of
“scoring” an educational or psychological test, and by the nature
of the scale along which the scores are expressed. The common
practice in mental testing is to assign an arbitrary number of
points of credit for the desired response to each situation {or
test item), the individual’s score being the sum of such points
earned. There is, however, no way of demonstrating concluswely
that these arbitrary weights are in proportion to the “true
values of the items, or of determining with complete obleCtmty
what these weights showld properly be. Hence, the linear scale
of values along which these scores are expressed s no‘t compa,rable
to those employed in physical measurement. The “unit” em-
ployed is unique to each scale and cannot be de<cribed or defined
in more fundamental terms, while its value}ﬂuctuates from point
to point even within the same scale. Fth\thermore the zero point
on each scale is mergly. aﬁﬂb%}i%ﬁ%? “yéference point whose rela-
tion to the absolute zero is ngb known. (See pages 29-31
of this text and questlons R and 2 on pages § and g of the
manual.) \\

Still further a,mb1gmtxm mental measurement results from the
facts that the traLK[ s which we wish to measure are themselves
dynamic and fluctuating within the same individual, and that the
measures obtalged of them are partly dependent upon attending
{and often,aeeldental) circumstances. An individual’s periorm-
ance on @ iental test always depends to some degree upon the
manner\m which and the circumstances under which the test is
admmstered Even though these external factors are controlled

%

or-held constant, variations in the individual’s own physiological
or emotional status may influence his responses.

Tor these reasons, the scores obtained on educational and psy-
chological tests must always be very cautiously interpreted. Such
scores must never be accepted at their face value, but must always
be considered as only approximate indications of the true relative
status of the individuals tested, or as likely to contain “errors”
of various types, any of which may be of considerable magnitude.



TEST VALIDITY : 213

The sources of these ‘“‘errors of measurement” may be briefly
summarized as follows: - :
1) The indirect character of all mental measurement _
2) The lack of generally accepted, objective and meaningful
defimitions of the things to be measured
3) The limited sampling of behavior-situations upon which the
measures are based
4) The unintentional measurement of srrelevant factors
5) The nature of the measuring scales employed O\
6) The fluctuating character of the individual’s mental, $mo-
tional, or physiological state AN\

THE MEASUREMENT OF ERRORS IN MEASUREMENT

Test Validity O

The palidity of a test may be defined as )‘,Qeﬁccuracy with which
it measures that which it is infended to\measure, OT a3 the degree
to which it approaches infalﬁb‘ﬂﬁﬁf‘fﬂf‘x‘ﬁ‘éﬁé’ﬁﬁﬂgonémt it purports
to measure. The degree of validity of a test, therefore, depends
upon the magnitude of the Cerrors” (due to any and all of the
causes just considered) which are present in the measures obtained .
from it. The actual siagnitude of the errotsin a set of fallible
measures of any &I could, of course, be determined directly
only if we had available the corresponding infallible or “perfect”
measures of H,e\ same trait for the same individuals. We could
then describe the validity of the falliblée measures in terms of the
average_’k median difference between the fallible and infaliible
measures (that is, in texms of the average or median error), or in
(terms of the coefficient of correlation between the two sets of
Measures, or in terms of the probable error of estimating the
infallible from the fallible measures. Tn this case, the coefficient
of correlation between the infallible and fallible measures would be
considered as the true coefficient of validity of the latter for the
group of individuals jnvolved. For reasons already given, how-
ever, it is impossible to secure perfect or infallible measures of any
mental trait for any group of individuals, and hence it is impossible
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to provide exact descriptions of the true validity of any of the
fallible measures which we are able to obtain. The true validity
of an educational or psychological test must always remain a
hypothetical concept, since there is never available an infallible
“criterion” measure against which the fallible obtained measures
may be evaluated.

In some situations, however, a partial indication of the va.hdlty
of a given test may be secured by a study of the correlafions be- -
tween the scores obtained on the given test and on other tests of
the same trait. If a number of different tests axg available for
the measurement of the same trait, and if it 13 the consensus of
authorities that one of these tests is definit¢ljBetter than any of
the others, then this test may be used as 3 “criterion” against
which the others may be evaluated. Suppose, for example, that
we wish to determine which of two given intelligence tests (Tests
Aand B) Is thwg;gbﬁ.ﬁgbflq&&}%gghe seventh grade level, and
that each of these tests is of the type which may be conveniently
administered to a large gro'up of pupils in a short testing period
—let us say, 30 minute$, Now it would be generally admitted
by test authorities that,\lo zo-minute test of the “setf-administer-
ing " type can yield results as dependable as those which may be
secured from af ¥individual” intelligence test such as the New
Stanford Reviston of the Binet-Simon Scale for the Measurement of
Intellzgmce\whlch can be administered only to one pupil at a
time abd e a relatively long period. Suppose then that we ad-
minister all three of these tests under standard conditions to the
P@lls in a random sample of seventh graders, and that we compute
the coefficient of correlation between the New Stanford 1.Q.’s and
those obtained from each of tests A and B. If, then, we find that
this correlation is significantly higher for Test A than for Test B,
we might consider this fact as strong evidence that, for pupils
like those in the sample, Test A is the more valid in determining
individual 1.Q.’s. How convincing this evidence would be to us

would depend, of course, upon our confidence in the New S tanf ofd
Revision as a criterion test. .
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The principa! limitation of this method of securing objective
evidence of test validity is that very often the tests which we wish
io evaluate are themselves the best instruments that we know how
to build for measuring the traits in question. With reference to
the preceding illustration, for example, it would be extremely
difficult to devise an intelligence test which would be generally
conceded to be definitely superior to the New Stanford Revision,
and which could be used as a criterion to describe the va.lidiﬁy\

of that test. Only when we feel certain (on the basis of.Subs/

jective opimien) that one method of measurement is definitely
superior to another may we reasonably use the one as af criterion
in the evaluation of the other. Even in this casq,{f:ﬁe criterion
itself would still be fallible, and hence the correlation coefficient
obtained would not be a true coefficient of /palidity, but would
only be indicative of the amount of agreembetween one fallible
measure and another which ‘igw%fgha:pis%"éorqewhat_ less fallible.
The student is warned that in t"g,“fﬁé‘:&{‘ﬁ?@’ gt&Hucation and
psychology, he will find presented-as “validity coefficients” many
correlation coefficients which, ‘because of the questionable char-
acter of the criterion, shqu@ pot be thus described.
¢ _
Test Reliability 5

An important Haracteristic of any test, 3 characteristic which-

tee of validity, is self-consistency
or reliabiﬁ{@..fn measurement. The individual items or hehavior
situatighs constituting any mental test always represent only a
very Hehited sample selected from & VEry much larger number of
Postible or available items. Any two such samples, even though
similarly selected, are almost certain to present differences in
difficulty as far as any given individual is concerned. Suppose,
for example, that two samples of 5o words each are selected in the
same way from the same “master list” of spelling words, and that
each list is administered as a list-dictation spelling test to the
same large group of high-school juniors, While the two distribu-
tions of scores may be practically identical as far as the groups

is essential to’hirt not 2 guaran

N\
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are concerned, very few individuals will make exactly the same
score on both tests. Asa result of chance differences in the sample,
any one pupil will almost certainly find more words that he can
spell in one list than in the other. If the differences in the two
scores are large for mcst pupils — that is, if there is a low rela-
tionship between the two sets of scores for the entire group —
then either of the scores made by a given pupil would have to(be
considered as largely due to chance, and very little reliance*gould
be placed in it as a measure of his ability. Close agreement in
the scores, however, would not prove the test to be\valid as a
measure of general spelling ability, since close ag"réement could
be found even though each list represented a w@ry &iased sample,
or even though irrelevant factors had seriowsly influenced pupil
performance. If, for instance, each list ha,'gi\})'een unduly weighted
with words of Latin origin, those pupi}?who had studied Latin
might have an qmaja@,cLﬁmtagg,JaghTthjs fact would not lead to
inconsistency of performance if beth lists were of this character.
Again, if both lists were dlctated too rapidly, each pupil’s score
might depend in part upoR hiow fast he could write, but since the
slow writers would be equal]y handicapped in hoth tests, higher
rather than lower dgicement in the two sets of scores might re-
sult. Consistency in measurement is therefore an esseniial but
nol o sufficiens,ggndition for test validity.
The Cosfficient of Reliability

The cbeﬁic:nent of reliability of a test for a given group is defined
as, Q:te ‘coefficient of correlation between the scores made by that
“group on two equivalent forms of the test successively administered
under the same conditions. Two forms of a test are said to be
“‘equivalent” if both contain similar content, that is, if the samples
of items constituting them were similarly selected from the same
materials, and if both forms show the same distribution of scores
(equal means and equal variability) for the same group. Since
strictly equivalent forms of a test are seldom available, a more
satisfactory practicable definition of the coefficient of reliability of
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a test Is that it is the average intercorrelation between scores on a
number of forms that have been made closely equivalent. By
definition, then, all equivalent forms of the same test are equally
reliable, : ' :
The coefficient of reliability is then simply a special application
of the coefficient of correlation. Whatever was said in the preced-
ing chapters concerning the interpretation of correlation coef-
ficients in general is equally applicable to coefficients of reliability.
Particular consideration should be given to the influence of(the
range of talent upon the coefficient of reliability. When co;r:l‘puted
for a group that is widely variable in the trait measured, the
cocfficient of reliability of a given test may be considetably higher
than when computed for a group that is relatively homogeneous
in the same trait. An achievement test, for example, might show
a reliability of .95 for a group of third tqughth grade pupils and
of only .80 for a group selected fro glﬁg five alone. We there-
fore cannot speak meaningfully of JJ# e CAT oY reliability of
any test. The same test will shew different reliability. coefficients
for different groups. FEach réliability coefficient must be accom-
panied by a description ofthe group upon which it is based to be
meaningfully interpregéd;” For this reason, coefficients of relia-
bility of different te;s}s}na.y be directly compared only if computed
for the same group-or for groups of comparable ranges of talent.
As is true.of the coefficient of correlation in general, coefficients
of reliability‘are also subject to Auctuations in random sampling,
and Htt&ependence can be placed in them unless they are based
upon. Yeasonably large groups of individuals. Again, as is true
6f eorrelation coefficients in general, it is dangerous to attempt
¥6 set up any arbitrary standards for the evaluation of reliability
coefficients. What may be considered as a “high” or “gatis-
factory” coefficient of reliability in one situation may be con-
sidered as “‘low” or «ynsatisfactory” in another, depending upon
the nature of the thing measured, upon the length of the test, upon
the range of talent involved, and upon the purpose for which the
scores are used. A reliability as low as .40 may be adequate for
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comparisons of average scores for large groups of individuals,
while a coefficient even as high as .95 may in some situations be
considered inadequate where very accurate descriptions of indi-
viduals are desired. The student is therefore advised to make no
attempt to set up any single classification of reliability coefficients
as “high,” “medium,” or “low,” but to evaluate the reliability of
each test on a relative basis in comparisons with coefficients sigfi=
larly obtained for other available tests of the same trait. O
"N\

Ways of Estimating Coefficients of Reliability ~\ Ny

The coefficient of reliability of a test for a givemgroup can, of
course, be computed in the manner implied inthe definition only
if two or more equivalent forms of the test aré available. The
majority of the tests whose reliability we #nish to describe exist in
only one form, and the labor involved i iy cbnstructmg an equivalent
form makes it ignpragticable.- gpydq§@m51mply for the sake of com-
puting a reliability coefficient. Fdt'such a test, we can sometimes
obtain a useful approximation- 10 its true reliability for a given
group by splitting the singlé“test by chance into halves, assuming
that these halves are “‘€quivalent” to one another, and scoring
each half separately forthe individuals in the given group. Such
“chance halves” \usua.lly obtained by letting the odd-numbered
items constitute oife half and the even-numbered items the other,
If the two hdlves are truly equivalent, the coefficient of correla-
tion be&ebn the scores on them would, by definition, be the
coefficient of reliability of either half alone, We can then estimate
the;e]iablhty of the whole test by means of the Spearman Brown
‘Prophecy Formula, which indicates the relationship between the
reliability of a test and its length. The general form of this for-
mula is as follows:

Hrp
i+ — e (3s)
where 712 represents the coefficient of reliability of a given test
(the correlation between scores on equivalent forms 1 and 2), and
¥, represents the coefficient of reliability of a test # times as long

.faw
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as the given test but in all other respects comparable to it. (The
longer test may best be thought of as consisting of # equivalent
_ forms of the given test.) In the case in which we wish to estimate
the coefficient of reliability of a whole test from the coefficient of
reliability of one of its halves, # in this formula would be equal to

2, and the formula would become
_ 2ry .
=Ty . (343,
in which #y; 15 the correlation between scores on the chafice
halves, and r,, the estimated Teliability of the whole test,(or tHe
estimate of the correlation that would be found betweemcores on
equivalent forms 1 and 2 if such forms were availahle?)

The principal shortcoming of this method of{estimating test
reliability is that chance halves of a test are rarely closely equiva-
lent, and hence the coefficient of correla.tiqn\'betﬁeen geores on the
halves only roughly approximates the>coefhicient of reliability of

either half. Furthermore, th idomroiothenitems con-

stituting the two halves and the fact that the individual’s responses

to certain items may be influedced by the responses he has already

made to others, together v\srfth other factors, may result in 2 closer

agreement in the_sc'qii‘,{m the two chance halves of the same test
than would be found if these two halves were independently ad-
ministered as geparate tests. Whatever the reason, it has been

well established' that coefficients of celiability estimated by the

" chance halves method are usually higher than those computed for
independentky administered

the saghe'test by correlating scores on
equivalent forms. - Cocfficients of reliability estimated in this
nly less dependable than those computed
, and must be

/"

{ninfiner, then, are not ©
directly, but also are likely to be spuriously high
interpreted accordingly.

Another estimate of the coefficient of reliability of a test exist-
ing in only one form may be made by finding the coefiicient of
correlation between the scores obtained by administering the samé
test twice to the same group. This is in general a very unsatis-

factory method, since it almost jnvariably results- in spuriously
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high coefficients. The correlation between scores on successive
administrations of the same test is essentially an index of the in-
dividual’s consistency of performance on the same items, rather
than of the adequacy of these items as a sample of what he can
do in general. If, for example, an individual were given 5o words
to spell and sometime shortly thereafter were given the same 50
words to spell again, in the latter situation he probably would
simply repreduce without variation the same spellings prevluus[y
given. Certainly we would expect his score on the second test to
be much more like that on the first than if the secgn’gl test had
consisted- of an entirely different set of so words.s; "The method
of repeated administration perhaps may be safely‘employed only
when the individual’s responses in the secong ‘testing are not a
function of his memory of specific informafion or of his ability to
recall the responses made by him in the ﬁ}st testing. This mcans
that this method should neve L ﬁgnployed to determine the
rehabﬂ:ty of a test of educatlona,l aé:uevement

The Reliability of a Single Sco’re
Suppose we had available a large number of equivalent forms of
the same test, and thaf we administered all of these forms to the
same individual pmdeér the same conditions. Because of the
differences in thégamples of items constituting the various forms,
we would, ofy¢euirse, expect the individual to make higher scores
on some\forms than on others. If the test were highly reliable,
we wotﬂa‘ expect most of his obtained scores to have very nearly
the- $ame value, but if the test were low in reliability we would
{expéct wide variations in his obtained scores. The standard
deviation of the distribution of these obtained scores would then
- describe the reliability of a single score obtained on one form of
the test and hence would also describe the reliability of the test.
Ii the number of obtained scores {or equivalent forms) were very
large, the mean score in this distribution would be known as the
individual’s ““true score” on the test, and the standard deviation
of the distribution would be the standard error of a single ~btained
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score. Assuming that the obtained scores WOl]lgI_'EE'diStﬁbut_&d
in the form of the normal curve, we could then interpret this
standard error in the same fashion in which we previpusly inter-
preted the standard error of the mean of a random samplé (as
is illustrated in the following paragraph). DT
Since we rarely have even as many as two equivalent .forms
available for a test, and never a very large number, the standard\
error of a single score can never be computed empirically by j:he
method just described. It may be shown, however, that {2
Cm=0 Vi1, PR 1)
i which o represents the standard deviation of obtaingd scores on
asingle form of the test administered to a large group of individuals,
¥, Tepresents the coefficient of reliability of thdt test for that
group,” and o,, represents the standard e;roi*éf a single score or

the “standard error of measurement.” /Ao lustrate the applica-

tion of this formula, suppose that o @ given achievement test in

. Ul . brar :
United States history administeréds io a Ii%ﬁ'éeorﬁrﬂhp of tenth
grade pupils the standard deviation of obtained scores was 24.
Suppose also that the correlatiant between scores on two equivalent

forms (that is, the coefficdent of reliability) of this test is .84 for
the group in questiork'\‘lﬁ this case, the standard error of a single
score would he ol="24 VI — .84 = 9.6. The probable error of

a single score aceordingly would be .6745 o = 6.5. If, then, a
very large number of equivalent forms of this test were actually
administe\ne’d‘to one of these pupils, we would expect his obtained

? The s,m&ent will note that this formula. is much like that of the standard error
of estitiite (see page 13g). In fact, ¢,, may be considered as a standard error of
estirfating an obtained score on a test from the correspgndmg true score. 1f for
€ach of the individuals in a large group we knew both the “'true score™ on & test end
the/obtained score for a single form of the test, the coefficient of co‘\r;e_!a;tlon, Yoty

. ti
between these obtained and true scores could be shown to be equal to +/r1s, that is,
to the square root of the coefficient of refiability o‘f the test. Hence the standard
error of estimating obtained scores from true scores is equal to

ot 2= ¥ I—fp=VIi~ry .
since 7%,y = pyp. The standard error of measurement, Ty TAAY then be canszd;:ed
as the standard deviation of obtained scores fora group of_mdzvxd'ualsall of whom have
the same true score. The student should guatd carefully against any tendency te
confuse the gtandard error of measurement with the siandard error of estimate.
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scores to fall into a distribution whose standard deviation would
be 9.6 score units. Assuming that this distribution would be
normal, we could then say that on approximately 68 out of every
100 forms of this test the pupil’s obtained score would be within
0.6 units of his true score, or that the chances are 08 in 100 that
his score on any single form would be within 9.6 units of his true
score, Similarly, the chances are 5o in 100 that his obta;in{:Q
score on any single form is within 6.5 units of his true score. Again,
since only a negligible proportion of the measures in a¢notmal
distribution deviate from the mean by three standard deviations,
we can say that it is practically certain that any sifigle obtained
score will be within 3 X 9.6 = 28.8 score units of thé.corresponding
true score. VvV
The standard error of measurement, like\the standard error of
estimate, has the advantage that it isfpresumably independent
of the range of talemtdnithe, group; for-which it was determined.
The standard error of measurement for an achievement test in
arithmetic, for example, wouldshave nearly the same value if
computed for a group of thirdto eighth grade pupils or for a group
of fifth graders only, Théstandard error of measurement, how-
ever, has the disadvaijt\a.ge that it is expressed in terms of the
unique unit in whiéh\the scores are expressed. Unlike the coef-
ficient of reliability, which is an abstract index independent of the
size of unit (émployed in measurement, the standard error of
. measurement may not be compared for different tests and is
diﬂicgd&té interpret for a single test because of the uncertainty
as tarthe meaning or absolute magnitude of the “unit” employed.
~The standard error of measurement is, nevertheless, an extremely
itaportant statistical concept, and should be much more widely
employed in educational and psychological research than it has
been in the past. Even though the standard error of measure-
ment is difficult to interpret because of the nature of the measuring
scales employed, its use does serve to emphasize the very important
fact that test scores may never be accepted at their face value
but must always be considered as only approxzimate indications of
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the true relative status of the individuals measured. If those
concerned with the interpretation of test scores, whether in educa-
tional research or in the practical school situation, followed the
practice of writing after each score the value of its probable error,
the mistake would be less frequently made of attributing real
significance to what are often only accidental variations in test.
performance. In the interpretation, for example, of educationg,l
profiles of individual pupils based upon achievement test batteries,
such as the Stanford Achievement Test, it should always be re-
membered that minor “peaks” and “sags” in the profile can
readily. be explained in terms of the unreliability of £he tests and
should not be taken too seriously. \/
. : AY;

The Significance of Measures of Reliability { 0

It has already been noted that tests jtended for the measure-
ment of certain abilities or amiev§mént§ for a-giyen group of .
individuals often, in spite of ffl\%’:’ﬁe&‘aéﬁ’dﬁ%%f_ofﬁéftest author,
actually measure other abilities than those which they are intended .
to messure. In other words, what 2 test is intended to measure
and what it actually dqes;\measure may be and often are quite-
far apart. The reliability of a test, however, does not give any
indication of how.fapapart these two things may be. The relia-
bility of a test idicates only how consistently it measures that
which it a,cgu};ﬁy does measure. - As long as a test measures
anytkingkénéistenﬂﬁ it is rel_ia.ble,- no matter how much what it .
does megsure differs from what it is intended to measure. I a
tﬁélf fs unreliable; that is, if it is not measuring anything consist-
;:ntly, it of course cannot be valid, that is, it cannot be measuring
accurately what it is intended to measure. The coefficient of
reliability theoretically sets an upper limit to the validity of &
test,* but it does not indicate how far below that limit the true
well ag the standard error of measure-

7 Thy i relighility of a test, as
¢ coefficient of ¥ r fluctustions of obtained scores that are .

i i ion only those f
ment, takes into oonsxdera.tm;s ow }fen : the same conditions. I

found between equivalent for uncel '
other words, it takes into consideration only those variations or “errors” that are

due to chance differences in the samples of items constituting the various forms,
and disregards any consianf errot in ‘the scores that may be due to any systematic
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validity lies. The coefficient of reliability is, therefore, most
useful for identifying poor tests or for demonstrating that a test
cannot possibly be high in validity. The fact that a test has a
high reliability coefficient, however, never constitutes proof that
the test is highly valid. Reliability coefficients are, therefore, of
very little if any value in demonstrating which of a number of
tests is most valid. O
If a test happens in part to be measuring some trait or ability
other than that which it is intended to measure, this undesirable
characteristic of the test may in itself contribute to highl;éliabﬂity,
even though, of course, it would tend to lower the \?zﬂidity of the
test. Suppose, for example, that the students ind{reshman course
in college English are given forty-five minutesto write an exposi-
tion on a certain designated topic and that grades are subjectively
assigned to these expositions, to be ugéd)ds a measure of what is
vaguely describedrwsitthe whiityote, organize ideas and to express
them effectively in writing.” In rating these papers, the instructor
- may be unconsciously mﬂuencéﬂ: by such factors as the legibility
of the student’s writing, the Sheer length of his exposition, and
the number of mechaa;iqéi errors that he has made in spelling,
capitalization, punctxéfi(m, and grammar. Because of the influence
of these irrelevantfactors, the grades assigned may be more con-
sistent from opécsituation of this kind to another than if the in-
structor had sicceeded in entirely disregarding them in rating the
papers. .\I‘ﬁ’é reason is that such things as errors in the mechanics
of co;lj,éc\ﬁ writing, legibility, and length are much more readily
algd'ijb]‘ectively recognized than are weaknesses in “organization

Cbias which characterizes all forms alike. If there is no such bias in the equivalent
forms, that is, if the only errors present are chance errors, then the “true scors,”
which is theoretically a perfectly reliable measure of whatever the test is actually
meaguring, becomes also a perfectly reliable measure of what the test is intended
to measure. In this case (which is hypothetical only, and would never be found in
actual practice} the *true score™ would be a perfectly valid as well as a perfectly
reliable score.  Hence, in this instance the coefficient of correlation between obtained
scores and true scores would be a true coefficlent of validity of the test. We have
already seen that the correlation between obtained and true scores is equal to the
square root of the reliability coefficient of the test. . Hence, 4/#y;, which is known
as the index of reliability, theoretically represents the upper limit of the coefficient
of validity for a test. For example, if a test has a reliability of .8z, theoretically it
cannot have a validity coefficient higher than .gc.
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and expression.” Whenever performance on a test is influenced
by irrelevant factors, then, and when these irrelevant factors are
highly consistent in their influence upon performance, their pres-
ence will frequently tend to raise rather than lower the reliability
of the scores obtained.

The coefficient of reliability is particularly restricted in usefuls
ness in the evaluation of available standardized tests of educatignal
achievement. In most of the common school subjects, the(@vail-
able published tests nearly all have fairly high coefficients of
reliability for the groups for which they are intended that is,
they are not characterized by any very large diﬁqi‘gér{ces in relia-
bility. For the range of reliability coefficients hich have been
reported for the standardized tests in a giyen school subject, it
is probably true that there is very little r‘élé.tionship between test
validity and test reliability, and it is)éven conceivable that in
some instances there may b%m}]ﬂﬁmbﬁgﬁf?ﬁg@"{l%&tiﬁ rela-
tionship. In other words, it migy sometimes happen that for a

number of tests, all of which'até fairly high in reliability, the most

reliable test is among tHe ‘least valid and the least reliable is

among the most va]%k:t“. "This happens because within any field of
instruction certaiinoutcomes of teaching are much more difficult

to measure dgjg’éti;rely than certain others, and because there
appears to he-gome tendency to give undue prominence in tests
to those.dutcomes that may be most readily and most objectively
measur'e?i,“regardless of ‘their relative significance. For example,
in.th;e'ﬁeld of United States history it is relatively easy to measure
‘With high reliability the amount of descriptive information the
pupil has acquired, but it is comparatively difficult to measure
the extent to which he has integrated this information, has ap-
preciated its significance, and can use it in the interpretati.on of
contemporary institutions and practices. Again, it is easler to
measure the ability to recall stereotyped textbook statements than
to measure true understanding of the ideas that they contain.
Tests which are primarily informational in character, therefore,
or which place an undue premium upon lesson learning of the
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verbal type, tend to bz more reliable than those in which a sincers
effort is made to measure the less tangible objectives of teaching,
For these and similar reasons, it is conceivable that the efforts
of test constructors to obtain high reliability in their tests has in
some instances resulted in less valid measurement than if they
had not depended so much on the reliability coefficient as an index
of test quality. AL
The concept of test reliability has been given undue promineunce
in the research literature of educational and psychologig:\a,krheas-
urement during the past ten or fifteen years, probably’/because
quantitative descriptions of validity are so difficultéo‘secure and
coefficients of reliability so easy to secure for.fabst educational
and psychological tests. For this reason, a spécfal effort has been
made in the preceding discussion to draw{to the student’s atten-
tion the limitations of the coefficient of Xeliability as a measure of
test quality. v e bthopédsirowever, ‘that the student will not
derive from this discussion the jded that the coefficient of relia-
bility is of #o value in test evalua.tlon or that a measure of a test’s
reliability is necessarily n:nsleadmg as to its quality. High relia-
bility is an essential chadcteristic of a good test, and reliability
data are extremely uéeful for the identification and elimination of
unpromising technitjues of measurement. Tests that differ very
widely in rehablhty will usually differ in the same direction in
validity, b@ small differences in reliability, particularly at the
upper Jimits of the range of possible values, are probably seldom
mdu;a.%e of either the direction or magnitude of the correspond-
_ lng differences in validity.
~There are many other statistical procedures, in addition to those
conmdered here, that may be used in the evaluation of test material-
In general, however, the true quality of a test can rarely be ade:
quately described objectively in statistical terms. In most in-
stances, parucularly in educational achievement testing, final
judgment as to the validity of a test must be based primarily oB
a subjective appraisal of the detailed content of the test in relation
‘to an authoritative description and competent logical analysis 01
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the trait or objectives to be measured. Lacking the extensive
technical training and experience necessary to make an adequate
appraisal of this type himself, the ordinary test user must depend
almost entirely upon authoritative or expert opinion in the selec-
tion of test materials.
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4.56  4-833  B.I0
¥.83 T4 7.5
g.85 1o4r “\10.37
12.44 ¥EM0D 1295

& .
14<9'.-'~\\15-n 547
17.43 ) 17.68 11.9%
0.8z Y 20.06 20.2
72,13 22,36  ¥2.§

8
30.42 30.60  go.7
32.23 32.49 3.5
33.03 3499 34.25

4%.87  art.gy 4297
42.84 42.93 o2
43,71 43 4388

47.36  a7.40 4T

27.74 47,78 4151
4%.08  48.FL 48.14
48-%7 4840 43.43
3883 aB.85 4B.08
25.85 48.87 4880
49.04  49.95 .

49.01
40.%9 4.2 49.23
49-33  49-33 4p-30
40.45  49- a9.47
49-23 40.50  49.57
A9 40 e

FIH

40.70  40.70

et e e

Unit Normal Curve,

: Adapted from R. H. Kr

ete”

auce and H. 5. Conrad,

FPrychomeirike, 1037, 2:55-56

«ts Seven-Decimal Table of the Area {a} under the

Q
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TasrE IT
TABLE 0F SQUARES AND SQUARE RoOTS OF THE NUMBERS FROM I TC IOODO
Number Square Square Rnét . Numbar Square Saquare Root
1 4 1.000 5L 26 o1 7.141
2 £ I.414 52 27 04 7.211
3 9 L.73a , 53 28 o9 7.2d0
4 16 2. 000 54 2g 16 7.348
5 EL 2.236 5§ 3025 7.410 ~
6 36 2.449 56 3% 36 7483
7 49 2.640 57 32 49 7.559\
8 B4 2.828 58 33 G4 7. 68607
] 81 | 3.000 50 34 82 776870
1o 100, 3-162 Go 3600 1 o Tepad
j 54 T2t - Z.317 61 37 a1 ..f "'7.81‘:
12 144 3.464 G2 3Bag > 1814
13 16 3.606 63 30,80\ 7-937
T4 I gb a.742 64 4800 3.000
I3 323 3.873 0z LN [ 3.06z
5 - 2356 4.000 66 ,'\\’4356 B.124
oy 2 8p 4.723 \2. 44 80 8.185
18 324 4.243 46 24 8. 246
9 361 4-359 69' 47 61 8-3:?
= 49 rwrwiHfaulibr "aTly .or g%n 4900 8501
21 441 4.583 NS e 50 41 8,426
1z 482 4.6go R A 72 5184 &.485
23 520 4.706 o 73 5329 8.544
24 - 576 .80 9 74 5476 4. 6u2
T ¥ 5.000 > . 75 56 a5 8. fbo
2% 676 5,060, T iEL] B.718
7 ? =9 54195 77 5929 8.775
23 . \?skzgz 78 6o 84 8.832
e 8 41 a8s . 70 62 41 B.388
L LA ooo”_. » 5.477 20 64 00 8.044
; . 96}} / 5.568 : ) 81 65 61 0.000
: ,{:3& 5.657 B2 67 a4 9.055
& 5.745 83 68 3g 9.110
) 11 56 5.831 84 70 56 9. 165
1225 5.016 . 8y ¥2 2§ 9.220
. I200 6.000 T B6 %508 0.274
1369 . 6.083 8y 75 6o 0377
1444 6. 164 88 77 44 9.381
| 1§ 2@ 6.235 -4} 70 2L g-434
C16eo 6.325 oo 8100 9.487.
4t . 168 .03 oI 8281 9,530
47 17 64 6.481 oz 84 64 0. 502
v43 - 1B4g T - G.557 . . 03 86 40 . .44
44 1936 6.633 o4 88 36 0. 695
45 20 25 G.yoB 95 90 25 0.747
46 21 16 6.y82 o6 pa 16 0.798
47 32 0D 6.8gh o7 094 00 9.840
48 . 2304 6.028 98 o6 o4 ~ o.Boo
49 24 61 7000 : 09 o8 o1 2950
5o 25 oQ 7-o7L | 1oo I oo oo 10,000 .
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TABLE 0¥ SQUARES AND SQUARE RooTS — Continsed

Number Squate Square Root Nuazber Square Square Root
1ox I oz OL I0. 050 F3:34 22801 12,238
Tog 10404 1o, 190 152 23104 12. 320
103 10609 10.149 153 23400 12, 360
04 108 15 0. 198 54 237 1 I2.410
j &1 I z0 3§ 10247 155 2 4025 22,430
106 11236 1. 296 ) 56, 24336 12,400
107 I I440 10. 344 p43 ] 2 46 49 I2.530
108 1166y 10.392 158 2 40 64 :2.579.\ \
1oy 11881 10. 440 156G 252 82 22,610 i
s I 2100 1. 458 1o 2 g6 oo ) ra:‘(ibg
11z 12321 10.536 61 ag08r 4 ‘22,689
113 195 44 10.583 . 1bz 206244 o\, 12.728
113 I 27 6g 10. 630 : 63 2 bg By 4, 12. 567
114 1 a2pgh 10. 677 : 164 748 05\ 17,806
115 13225 Io.724 . s gpdes) 12,845
F4:3 I 3456 10,570 66 2¢5 56 12,884
35 1368 10,817 165 K¢ \'78 89 12.923
118 13024 10.863 168'\  28zay Ti.961T
34,3 141861 J0. 080 16y \ 285 Gz 3,600
120 14400 T5. 054 P e 2 By oo 13.038
kzg z 4641 I1.000 o\ 71 29441 13.077
122 148 84 11045 ;ib ;:}; :osf;. ;;:;g
123 15120 11.097 W\.n{\v N T™a bl‘ar 20, .
124 %5576 a6 0P fAbrary B @in 23
125 3628 L. I80 o :o B £ 30028 15,335
126 15876 17.208 276 30976 13. 366
127 I 61 20 1L 260 77 3 Ié 29 .13-30:
128 1 63 84 JIT. 314 75 31684 13.34
129 1654r . Qz\: 358 7y 43041 13'3?"2;
130 16300 EI. 402 180 32400 13.4T

AW a4b 181 31761 £3.454
81 1 } bt 1fia 33T 24 13.408
332 1 734 rr.48¢
133 5 80 Ir.533 183 313480 13.5%8
134 {19956 . 11576 184 338 56 xs-g:f
135 :"\)'32 25 11.610 18 34215 I3.
136\ 18106 - 5662 ) 186 34506 23-638
187 34060 . 3.6y
13% 187 6o T1.705 et 13,711
SIgR T 9044 IT.74F I 35544 s
{ Naag 19321 11,700 8y 357 2r I3.74
“\“r110 1gh00 ..  11.53% Igo 3 61 0o 13.784
81 ¥3.820
41 1 g% 8r rr. 894 .IDI 3 gﬁ 3.856
6 102 3 4 3
142 # ox b4 11.91 . 13,80
I43 0449 - 11,058 193 37249 s
s 104 37636 13.93
T44 20730 12,000 . i 13,004
45 2 I985 1Z.042 05 3 L3 .
146 2£316 13,083 96 38416 14;00;
. ' 97 38809 £4.05
TAT 2 16 0g 12,524
66 58 39204 14001
I48. . 5 1D G I2.F byl
149 - 2 22 9T 12,209 09 39601 4.
150 z 4500 12.347 200 4 06 00 4. 142
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232 TABLE OF SQUARES AND SQUARE ROOTS
TABLE OF SQUARES AND SQUARE Roots — Continued
Number Square Sqguare Root Number Square Square Root
201 404 0L 4. 177 a5z 63001 15.843
202 40804 14.21% 252 635 04 15.873
203 41209 14.248 253 6anog 15.906
204 41616 14.183 254 64516 15.937
205 420285 14.318 255 G025 15.96¢
206 424 36 14.353 256 6 55 30 16. 000 L
207 428 40 14.387 257 6 6o 49 16.031
208 43264 T4.422 258 6 65 62 16, 062
209 43681 14.457 250 6708r {14
210 44100 14-497 260 67600 162
£\
2EI 4 45 21 14.520 261 681 21 16,155
ar2 44044 14. 560 262 686 44, * 16.186
213 45360 24.505 263 6orbo\  16.217
214 457006 14.62p 264 696§6 16,248
215 4 bz 25 14.863 a6y . b2 75 16,279
ath 4 66 56 14. gy 266 ¥or 56 16,310
217 4 70 8g 14.731 267 N ¥ 1z 8 18, 340
218 47524 14.965 26B0Y 71824 16.371
219 470 61 14.%09 (@ ¥ 25 61 6. 401
220 4 84 00 x4.832 N 7 20 00 16. 432
221 48841 14.866 ) 21 73441 6. 462
222 2 gy w .dbraulibrary praiin z, 7308 16,492
223 40729 - 14.933 N A 273 74520 16. 523
224 30176 4.007 g 274 75046 16.553
225 506 25 25.000 NS 275 7 5625 16.583
226 51076 s, 0.3‘3’ ’ 276 7 6176 16.613
a3y 51529 I5. 867 277 r67 2g 16.543
228 51984 X5 100 278 7 72 84 16.673
229 52441 _{ Y5.133 279 778az 16. 703
230 529 oo\\ 15,166 280 7 8300 16.733
231 5 3zt 15. 10Q 281 7 8g 61 6. 763
232 5/48'2q 15.232 282 7 g5 24 1h.703
£33 N34z 15.264 283 $o08g 16.823
234 . P47 56 15.297 284 8af 56 16,852
235 (/N 55225 15.330 28z Bz 25 16,882
.”\‘¢
}%ﬁ‘ W  556gb 15.362 286 S1706 16.g12
£ 5 01 bp 15.305 2%y 8§ 23 6p 15.041
o\ ess 56644 15.427 288 82944 16,971
RS ok §yT 2L 15,460 28g 83531 7000
A Y 240 576 oo 13,492 g0 84100 17.029
24T 58081 I5.524 201 8 46 81 17.050
242 585 64 15,550 202 852 64 17088
243 59240 15.538 293 B840 Iy.T1Y
244 595 36 15.620 294 8 64 36 17.146
243 6 oo 23 15.652 293 87025 17.276
246 6o5 16 13.684 296 8 7616 7. 2085
247 610 0n 15,7168 207 88200 17.234
248 61504 15.748 298 88504 17.263
240 4 2o 01 15,180 200 8 g4 01 17.202
250 6 25 00 15.811 Joo g oo oo 17.321
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TABLE OF SQUARES AND SQUARE ROOTS 233
TABLE OF SQUARES AND SQuare Roots — Continued
Number Square Square Foot Number Square Squate Root
301 gobor 17.34¢ 351 Iz32 01 18.718
302 GI204 I7.378 154 12 30 o4 8. 762
3o3 o180 I7.407 333 12 46 og 8. 788
104 o 24 16 I7.430 354 12 53 16 18. 813
303 03225 Ty 464 355 12 Bo 25 8.841
306 ¢ 3636 T7.403 356 12 67 36 18.868 ’
oY G42 49 17.52L 357 12 74 4% 1%.804
308 o 46 64 17.550 358 12 81 64 18.p21
300 o 5481 17.578 359 12 88 81 18.0470 "\
310 ¢ 61 oo 7. 607 360 12 96 0O 18.9{4\"'
31z g 67 2x 7.635 361 13 603 21 .'xg‘.ooo
312 o344 7. 66 3b2 31044 FNIgloab
313 o 7969 r7.tgr 303 1317 60 4\, TH.053
312 ¢ 85 o6 I7.720. 464 1324967 19.079
315 9225 7. 748 365 1333423 19.10§
316 ¢ 95 56 17.476 ab6 T3, 3g 56 1g.151
317 1004 8 17.804 36y \;s 46 8p I9.157
a8 101124 17.833 368 I\ T334 24 19.183
319 o176 17,861 369'\ & 13616 I9.200
320 I0 2400 17.830 30N 13 6 00 1g.235
AN\
381 1530 41 17.916 . \anx 13 76 41 1g. 261
322 10 36 84 17.944 oL ¢ 372 1383 84 rg.287
333 1043 29 7972 WWY Jndbmmlibrar?mvg_in 19,313
324 10 49 76 ioce OB a4 398 19.339
325 10 56 23 18.028 N 378 14 06 23 19.363
o -
326 10 62 76 18.0985 276 1413 76 10301
32% 10 69 20 1%087 377 14 4T 30 19.416
328 1075 84 AEENLTT 378 1428 84 1. 4432
320 10 83 43 ? i,;ﬁ‘zas 370 14 36 41 10.468
330 10 3p 00 18. 166 3%c 14 44 0O D994
331 1095 6 ) 18.103 381 14 51 61 19.519
332 11 6224 18,221 382 3450 24 10.5458
333 FhaB By 18,248 383 14 56 89 10.579
334 2pa5 56 18.276 384 14 74 56 0. 596
333 \2\1 22 %8 8. 303 385 1452 28 19,621
33\ 112808 18.330 386 14 89 95 19.647
37 11 35 6o 8. 358 387 14 07 fip g. 673
gz IT 42 44 18385 338 1505 44 19.6g%

7N %330 II 4021 18,412 330 15132 10.793

\' W 71 1t 5600 18.430 300 15 2L 90 19.743%

) 3
342 “z1 62 81 18. 466 a9t 15 28 81 10. 774
342 1 69 64 18.493 392 15 36 64 19.799
343 117640 18. 520 303 1544 40 1p.824
344 11 83 36 18.547 304 15 52 36 19.849
345 119035 18.574 308 156025 19,875
346 r1 g7 b 18, Gor 300. - 15 68 £6 1p. 400
347 170400 18. 628 307 5 76 og 19.025
348 121104 8.655 308 15 B4 04 19,050
340 12318 01 3.632 - 309 T5 02 01 19.075
350 122500 18. 708 400 . 160000 20.000
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TABLE OF SOUARES AND SQUARE Roots — Continued

Number Square Square Reot Number Square Square Root
401 26 08 oL 20.025 451 20 34 Of 21.237
402 16 16 oy 20.050 452 20 43 04 2t, 20
403 16 24 09 20.075 453 205209 21.284
404 6 32 16 20,100 454 20 61 16 41.307
405 16 40 25 20.1325% 455 20 70 15 21.331
400 16 48 36 20.149 456 20 %79 36 21,354
407 16 56 40 20.174 457 20 BB 49 21.378 p
408 16 64 64 20. 1990 455 20 g7 B4 2T.401 N
A00 6 72 Bx 26. 324 459 . 21 of 81 21.424
410 1681 00 20, 248 . 460 21 1600 21.448‘\

7\,

411 6 8g 21 20,5373 461 21 25 2T g ”
ALZ 6 07 44 20, 208 463 T 21 3444 4 2W404
413 - 17 03 60 20.323 4063 3T 4360 NG A507
414 171300 20.347 454 (4t 5208\, 321.541
413 17 22 25 20,374 465 21 62 25{ ) a1. 564

-~

436 17 5056° 20.306 466 217 1)50 ar. 537
417 7 38 80 0. 431 467 g1\80 By 2x.610
418 IT 47 24 20. 445 468 T oo 24 21.633
419 17 55 b’ 20.469 46p N Var gy 61 21. 656
420 . 176400 20.494 410l & za0p0o ar. 679
421 1y 72 4T 20, 81 P 4.:»:x 22 18 41 21.703
422 17 30 Mww,dh‘b’gtﬁibrar {OCE, bR 22 27 B4 21.726
423 17 8529 20,307 * ¢ 473 22 37 20 21,746
424 17 97 76 20. 501 i 1 ) 22 46 76 aT.y7E
425 18 ob 25 20,016 : \ 475 22 56 23 21794
426 18 14 76 20.64003 arb 27 63 76 21,817
427 18 23 20 20604 477 22 75 210 a1.840
428 133184 G088 478 22 8481 21,863
429 18 40 41 720,712 479 22 g4 41 21.886
430 - - 1B4poa, '\‘,,10.736 482 23 04 0O 21.909
433 18 57 B 20,761 43t 23 13 61 22.032
433 18 6624 > 20.78% 48a 23 23 24 21.954
433 18074 8o 30.50p 483 23 3780 21,977
434 (1B B 56 20.833 484 23 42 50 24,000
435 )8 9z35 20.857 ) 433 23 52 25 22.023
43( Y 10 0096 20, 88z 486 23 61 96 22.045
ﬂé Y mogbe  20.008 487 a3 71 6o 22,068
N 19 18 44 20,028 488 23 8T 44 22,001
CNasg 1g 27 aL 20.952 480 23 gI 21 22,113
[/ ‘\' ¥ 440 19 3600 20,076 400 24 O 0O 22.136
441 19 44 91 2I.000 401 24 1081 22.I50
442 19 53 64 21.024 492 24 2004 22,181
443 19 62°40 21.048 493 24 30 49 22.204
a44 1g 7T 36 © 2L.oYI 494 a4 40 36 239.220
448 1o Bo 25 2T.00% 495 24 50 25 22.240
446 10 8¢ 16 21,110 406 24 60 16 22.a7T
447 199809 ar.142 497 ma7000 23.293
4438 20 0F 04 7%, 166 498 24 8004 2z, 310
449 2016 0x 21. 190 . 409 24 GO OL 22,538
250 20 25 00 21.213 : 5o 250000 - ML
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TABLE OF SQUARES AND SQUARE Rdors — Continued

<

r g
Number Square Square Root Number Square Sqnare Root
sot 25 10 0L 22,583 1133 303601 - 23.473
303 252004 22.405 552 304704 23.495
503 25 3009 22,428 553 303800 23.516
504 25 g0 16 27,450 - 554 sofp1b 23.537
505 25 5025 22.472 . 55% 308025 23.558
gob 25 6o 36 22.404 556 3oor 35 23.580
507 25 7040 21,517 557 310249 3. b1 N
5o 25 80 64 22.530° 538 311364 13,622
o0 35 oo B 22,508 550 3124 81 23-643 4,
510 26 o1 0O 23.583 5o araboo 23,6645 N
5IL 26 1T 21 2z.50% 561 3t 47 2l 23"@5
513 26 21 44 32,627 sdz 3158 44 " ‘ea. 701
513 26 31 69 27,650 563 ar6pby { “ag7ald
554 26 41 pb 2z 052 . 364 srBogh I F5.740
515 26 5z 2§ 22.694 565 - 3 9235‘\{ 23770
536 26 62 56 23.716 566 2036 23.901
517 26 72 B9 22.758 567 32954 89 23.812
518 36 83 34 z2.7ha 566 7 N2 26 24 23.833
519 a6 p3 b1 22,782 5602 {3237 61 . 23. 854
53e 27 04 00 22.904 L7 N 324900 23.875
gat 27 14 4L 22,825 g 22 6o 4F 23,896
522 27 24 84 22.847 $odimdlA 3377 84 23.917
523 27 35 20 213,860 b "i“f'briﬁ.l brarjzergin  #3-937
514 27 45 76 22.801 OB 574 - 3zga ¥ 23.058
525 275625 - z2.013 G\ . §75 330623 - 23.979
526 27 66 16 22.985 576 3317 76 24.000
5§27 27 17 39 : a;’;‘osﬁ 517 332939 24.031
538 - 27 87 84 e 578 334084 24.043
520 27 9B 41 ¢ #\,23.000 570 33534l 24.002
530 28 00 6O \\ 23,032 580 33 6400 24.083
531 281061 23.043 581 337561 24.104
- 533 2836 24 25,005 ) 58z 358724 24.128
533 {2846 8o z3.087 ) 583 3308 8o 34.-145
534 {\2B5r st “23.308 584 141056 24.365
u35 &/ a8 6225 23.130 ' 585 342285 24,187
M\ 28 73 96 23.352 586 343396 24,207
o \ 587 28 83 Gp 43.173 587 14 45 B9 24928
A s 3804 24 23.193 358 3457 4 24.249
LJOY 530 29 05 7X 13,216 580 246021 24,969
s 549 2 16 00 23.23% . 590 34 Bx o0 T 290
54T ag 36 81 - 23.259 501 340281 24319
542 2937 64 23.281 - 3504 B4 24. 331
543 29 43 40 23,302 ' 503 . 351640 24,358
544 29 50'36 23,324 504 - 353836 24.37%
545 ag o 35 23.345 505 a5 4028 24-393
546 2p Br 16 23.367 5ab - 355236 24413
547 209100 23.383 597 356490 24.434
548 3003 04 23,409 508 35 7604 24.454
-840 30 T4 O 23.431 500 35 B3 or 24474
£ §50 302500 23.452 o 36000 24495
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TABLE oF SQUARES AND SQUARE RooTs — Continued

: Number Square Seuzre Root Number Soquare Square Root
Gor F61z01 24.513 73 42 38 ar 2%, 515
Goa 362404 24.538 652 425104 25.534
LLE 363600 24,558 653 42 6409 25.554
oy 364816 24.576 f54 4277 16 25.573
6oz 366023 24.597 635 42 90 23 25.503
Gob 367236 24.6017 Ol 43 03 36 25.612
Gay 368440 24.637 657 431849 25.052
o8 360664 24.658 G5B 43 79 64 255853
Gog 370881 24. 678 659 43 42 81 /25, G2
610 37 21 00 24,698 o 43 56 00 \.25- %00
611 373311 24.718 b6t 43 69 21 A a5.y10
b1z - 37 45 44 24.739 662 43 B2/43, 25.729
br3 3757 Gp 24. 759 i3 4345 60 25.749
brg 37 69 g6 24.779 664 L ool 25.768
615 378225 24. 700 665 4422 25 25.788
616 3704 56 24,819 666, N\, )" 44 35 56 25.807
617 3806 89 24.839 6577 444389 25. Bz6
618 38 1y 2g 24. Bbo 658 44 62 24 25. 846
610 383161 24.830 S 660 447561 25.565
G20 38 44 00 24.GO0 '\ 670 44 8g oo 25,884
621 35 Sﬁﬂw dbrudtbrary jrg inb7z 4507 41 25.9048
G22 24,040 \ G2 45 185 84 25.923
623 38 31 zo 24.560 A\ 673 45 20 20 25.042
624 3803 76 249803 tiy4 43 42 76 25,962
623 390025 25. 000 675 45 50 25 25.98z
fiz6 3018 76 13,020 676 45 59 76 26. 000
2y a03129  “\25.000 677 45 83 29 26.010
628 3943 \ W 55,063 673 459684 26,038
629 3956 41 25.08%0 679 4610 41 26,058
b3e soéooo 25. 100 680 4 2200 26.077
631 3~Q8: or 28,120 GBT 4637 61 26.006
632 {3004 24 25.140 682 4651 24 26,155
633 \ o of Bg 25.150 683 4664 89 20,134
53{ ~\ {/ 491956 35.179 684 4678 56 26.153
40 32 25 25.1099 G835 4693 28 26.173
o\ '%5 40 44 06 25.21g 686 47 08 g6 26.192
N b3y 4057 69 75,239 687 47 10 Go 26, 211
' 40 70 44 25. 259 688 473344 26. 230
> 639 4683 21 25.278 680 A7 47 21 26. 240
\ 3 bq0 49 66 0o z5. 298 figo 4761 50 26. 268
G4x 4108 81 28.318 6or 477481 26,287
642 412164 25.338 : g2 47 38 61 26.306
a3 4 34 40 25.357 g3 o240 26.325
644 41 47 36 25.377 Go4 48 16 36 26. 344
645 . 41 bo a3 25.397 693 48 30 25 26,363
B46 41 7316 25.41% 6ob 43 44 16 26,382
647 41 86 09 25.436 a7 48 58 o9 a6. 4or
648 4799 0 25.456 698 487304 26,420
G40 42 12 01 25.475 6op 488601 26.430
L 650 42 2500 25.403 700 490000 26.458
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TABLE OF SQUARES AND SQUARE RooTs — Continued

Number Syuare Square Foot Number Square Square Reot
7oL 40 14 ©F 26. 476 751 - shqoor 7.404
yo2 49 28 04 26,405 752 5635504 27.433
7o3 49 42 €0 26.514 753 56 7o 0 7. 44
704 40 56 16 26,533 54 5085 16 27.459
7os5 AQ 7O 25 26.552 753 570025 27.477
yab 40 84 36 26. 571 L 57 15 36 27.495
707 4008 49 26. 586 757 57 5049 . a7.584
708 501788 26, 608 758 5745 01 27.53%
709 50 26 81 26.627 759 576081 27.358 L4
fio 5041 00 26. 646 Foo 57 7600 27.508 N W
71T 5055 21 26. 665 FIo3 57 0T 2E 2y. §B6™
yI2 sobg44  26.085 62 58 ob 44 27604
713 50 83 60 26. 02 763 58 a1 6 i 622
714 5007 96 26.721 764 83606 { & 27.064%
7158 EI Iz 25 26.739 783 58 52 55."\.\ a7.659
736 51 26 56 26.758 766 58 oy 56 2. Gy
7 sr4089 26.777 767 280 27.60%
718 318524 16, 796 . 768 o° 24 27733
710 51 6p 61 26.814 7600 0\, 5013 61 27,731
720 . 51 Bg om 26,833 770, ) ez 27.740
721 510841 26.85T 771" 59 44 ;: : 27. 7:;
722 5212 84 a6, Bra vk 59 58 27.795
¥23 iz 27 20 26,889 “-’»dbﬁQthragysgyg‘jn 29.503
724 52 41 76 . 2b.goy 3 7T4 3090 70 27.891
725 52 5628 2626 ,: \ 778 foob 25 27.830
726 52 o 76 26. G448, 6 6o 21 76 27857
727 52 85 20 26,008 777 6o 37 29 27.875
728 3390 8a 28, 93: 778 6oz 84 27.803
720 53 T4 41 \ il o 68 4T 27.91%
7ae - 332900 1. 019 780 foByoo z7.928
73t 53 43 61. M ay.e3y ¥81 Go po 6T - 27.940
752 538B%s | 27.958 782 61 15 24 27,964
733 72,89 27,074 783 61 30 89 27,982
734 o 3357 56 27.092 784 61 45 56 28. 000
735 \ \54 OF 25 27.111 w85 6r &2 25 28,018
7365 \ 541606 27.12¢ 786 61 77 ob 28,030
Tad 54 31 B9 a7.148 187 6r g3 69 28.054

7738 5446 4 27. 166 788 Bz o0 44 28,091
"'s\' L T3% 54 0L a1 Ta7.185 780 62 25 23 28B.089.
S\ ;T4 54 7500 27.203 700 62 41 0O 28.307
74 54 9o 81 a7.221 FLs 62 56 81 28.135

742’ 5505 64 T 27.240 492 62 72 B4 28,142

743 55 2040 27.258 793 62 B3 40 28,160

744 533536 a7.278 o4 63 a4 36 28,178

745 55 5035 27.205 793 63 2025 28,196

746 56516 27.313 ol 63 36 16 28213

TAT 55 So 09, 27.33% 797 63 5209 28. 731

748 550504 27.350 i I 63 65 o4 28.240

740 sbroor z7.368 o0 63 3401 28. 267

¥50 g6 25 00, 27,580 Boo fiy 00 00 28,382
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TABLE OF SQUARES AND SQUARE RooTs — Comfinued

Number Square -Stjnare Root Number Square Square Root
Bor . 64 16 o1 28,302 731 72 42 of 20.L73
Soz 6432 04 28.330 852 72 5004 20.18p
fo3 64 48 og 28. 337 853 72 ybag 25,206
8oy 64 64 16 28. 358 824 72 03 16 20.223
Bog 64 8o ag 28.373 11 73 Io2g 2. 240
8ob 64 96 36 28, 350 236 73 27 36 20.257
Say 651240 23. 408 Sgy 7344 40 20.275
8ol 63 28 64 28. 428 858 73 61 64 29,2024 ‘\
809 65 44 81 28.443 . Bsp 7378 81 20.3060 N\
810 65 61 oo 28. 450 S6o 73 06 oo 07420

« \
Bz 65 ¥y ar 28,478 R61 7413 91 S30.343
Br2 6503 44 2§, 498 862 745044 29 360
813 66 op Gy 28,513 863 74 47 60 20.377
Brgq 66 25 g 28,5831 864 74 G4 96\ 2¢.394
815 66 42 25 28,548 863 748225\ } 2Q.41L
816 66 58 56 8. sbt B66 400 56 30.428
Bry 66 74 89 28.583 857 168y 20.445
813 66 or 24 28. bor 263 { 7S 34 24 3g.402
g1p 67 oy 61 28. 613 869, w5 5161 20.479
820 67 24 00 28.636 B;vo’ 75 bg oo 20. 496
8ar 6y 4oar 28. G5 75 86 41 20.523
822 67 s syw.d b"ﬂ‘j#bm"y 3"5"“872 76 03 34 29.530
B23 67 73 29 28,638 LAY 8y 63120 9.547
824 67 89 ¥6 28, 703 a. f" By 76 38 76 29. 5063
825 68 of 25 B.rz el 875 w6 56 25 2g.580
8af- 68 22 76 28, 740 876 2673 76 29.59%
227 68 39 29 28, 758 By 76 o1 29 29.614
813 63 55 84 289y, 878 7708 B4 29. 631
829 6Byz 41 4 @8g92 Byg 7y 26 41 29. 648
830 65 8y oo \}8 B0 280 77 44 00 2p. 605
831 Gposby § » 28.827 88x 77 61 61 2. 682
832 69 zz 47" 18844 882 717024 29. fig8
B33 28. Bz 883 77 06 8p 20.715
834 og 23.879 884 7814 56 29.734
B3y GQ 28.806 883 7832 28 2¢.749
836 "69 88 g6 28.914 836 78 49 06 29.766
8332, O\ 7o 05 6y 28,031 837 78 67 6g 20.783
B3B, 7022 44 28.048 223 78 85 44 20. 700
p S:‘g 70 30 21 38,963 889 ¥Q 03 21 2. 816
a \% 70 5600 28.983 8go 79 21 oo 29.833
841 - yorz 81 20,000 Bo1 79 38 8r 2g.850
842 70 89 54 20.017 ijet] 70 56 64 2¢. 866
34;_5 7L o6 49 20.034 803 Y974 49 29. 883
844 7t 23 36 0,052 B4 76 03 36 29.900
845 7L 4025 ag. by 295 Sa1o1g 2g.918
848 71 37 16 29,084 8o 202816 20.533
847 7I 74 00 29.103 807 8o460g 29.959
848 7I 01 04 29,120 BoB Bo 64 04 29.967
840 72 of or 20.238 o0 808201 29.083
8xo - 72 25 00 20,I55 goo 810000 30,000 _
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TABLE OF SQUARES AND SQUARE Ro_st - Continued

Mumber Sguare Square Root Number Square ~ Square Root
QoI &1 8or 30 017 [*14 4 go 44 01 30.838
goz 81 30 04 30.033 952 go 63 04 30.854
03 815409 30,050 853 g0 Be og 30.87%
04 Br 7216 30.067 054 9t oI 16 30.387
(111 81 go.23 jo.o83 Q55 oI 20 25 30.003 .
gebi 8208 36 3jo.100 a56 o1 30 36 30.9I0
po7 B2 26 49 30,116 057 or 5840 32.035
gol 82 44 64 30.133 058 o1 77 64 36,057 AN <
9o 22 62 8t 30.150 050 o1 ofs B2 3o.068 LN
fIO f2 81 00 Fo. 166 gbo gz 1600 o084\
kg
PIT 829521 30.183 [l 4 02 35 31 4 ‘ji.ooo
oI2 831744 30.100 062 0z 5444 & 3tiord
013 83 35 60 go.zr6 963 02 73 6o /N ar.032
014 &3 53 06 30.332 064 0292 g6 ' 51048
24 837223 30.349 005 - 934225 31064
il - 8300356 30.268 ob6 o3 56 31.081
o1y 8408 8p 30.282 oby /50350 B 31.007
org 84 27 24 3o.209 968 T B3 7024 AL.T13
919 B4 45 b2 30.31% obg 0, 038061 31.E3Q
020 846400 30.332 9@\, vacgoo 31.145
p2E 84 8247 30.348 L o7r o4 28 41 3x. 161
g2z 830084 30.364 WwW dhl‘_&uixbrary An 3E.27Y
943 851929’ 30,382 o\ ¥ 973 o4 67 29 3E.103
924 85 3776 30.397¢ k" o4 04 86 76 ar.zog
925 85 56 25 30.414 9 075 o5 ofi 25 31.225
g6 85 74 76 3o.430" w6 - e52596 3T.a41
027 85 03 20 30 44 oy 95 45 20 31,357
028 86 11 B4 30{463 or8 95 64 84 31,073
919 86 3041 0. 4lo 979 05 84 41 31.280 :
030 864900 \ 406 péo ofi o400 31.305 :
N\ - .
03L 86 67 6.\, ) 30.512 . ol 06 23 62 3L.341
o33 86 86,24/ 3 30.520 o8z g6 43 24 3r.3357
033 87 dq Bg 30.545 083 06 6z B 3r.53
o34 892345 30. 561 984 96 8z 56 31.360
935 ooERA2 s 30.578 08y of oz 25 31.385
6 "By 6ogh 30.504 g6 g7 21 96 3I.401
gg"\ 87 7o 60 30. 610 087 97 47 b9 3T 417
038% By o8 44 30.627 038 o7 6144 3.432
oo B8 17 21 30.643 olg o7 81 21 31548
#N\Modo 88 36 00 30.659 9o o8 01 0o 35464
3 .
r 88 54 8r aa. &b gor 08 2081 gr.qdo
g:, 82 73 64 30.601 902 98 4o 64 3r.406
043 88 02 40 30.708 093 o8 Go 40 3r.512
044 ' 8g11 36 3o.728 " o8 Bo36 3r.528
043 8930258 3o. 74T 005 00 0O 25 JE-544
. o0 20 16 3T.559
046 89 49 16 a0.757 oot
947 80 68 o9 30.773 gg; ) g;:x :;:-;i
{+ 19 -
Yo e 3o.506 999 gpsoor  3r.f7
950 o 95 00 3o. 822 1000 160 00 00 31.023




240  CRITICAL VALUES OF SIGNIFICANCE RATIO

Tarie III

MmmoM VALUES OF SIGNIFICANCE RaTio REQUIRED FOR
SIGNIFICANCE AT VARIOUS LEVELS®

Degrees of Levels of Significance
Freed
(N —1} 20% 5% 2% 1% 0.1%
T 3.078 12,706 3r.821 63.657 636.619
a r.886 4.303 6.063 9.925 31.508 ..
3 r.638 3.182 4.541 $.841 12,041 N\
4 L.533 2,776 3.747 4. 6o4 8.610
5 1.476 2.571 3365 4.032 6.350°, ¢
: {
6 1.440 2.447 3.143 3.yo7 fEhn
7 I.418 2.36% 2.998 3.400 \ Segos
8 1.307 2. 300 2.896 3.355 NG Sooa
9 1,383 2,262 2.83rx s.250 . N 34.781
10 1.372 2.228 2. 764 3‘169’§'~ 4.387
I I.363 2,201 2.713 3;?@@ 4.437
1z 1.386 2.T70 2.68x G55 4.318
13 1.350 2.100 z.65a \3.012 4.22T
14 1.345 2,148 2. 624 :'\\w 2.977 4.140
I5 1.341 2.13L 2. G2 '\ & z.oar 4.073
16 1.337 2.720 23583,/ 2,931 4.013
17 I. 1% \ 2.580% 3.065
15 - %‘.‘g@g‘”-db‘ aq!kblrm Y?ffﬁifi 2.878 3.028
19 r.528 2.003 a0 2,330 2.861 3.883
20 1.32% 2.086 o 7 z.5:8 2.545 3.550
21’ I.323 2Qﬁﬁ. 2.518 . #.831 3.810
ax I.zar. - 2.075 2.508 2.819 3.719%
23 I.310 w 200bn 2. 500 2.807 3.707
24 r.318 W 2064 2.402 2.707 3.745
25 .36 {‘ } "a.060 2.485 2,987 3.725
20 X.415 2,056 2.470 2.970 3.707
27 131 2.052 2.4%3 z.971 3.690
28 75313 2,048 3. 467 2.963 3.674
ET) PN 2.045 2. 462 2,456 3.080
z0 (L)1-310 2.042 2.457 2.750 3-640
:t\ : .
453"\*' L.303 2.021 z.433 25704 3-551
A 1.296 2,000 2. 300 a.06c 3.480
£ r.z80 I.¢8% z.358 2.617 3-373
o\ @ T.282 196 2.326 z.596 3-291

o (_/This table is taken by consent from Skuistical Tables for Biological, Agricultural and Medicol Re-
\ ‘wearsh by Professor R. A. Fisher and F., Yates, published at 13/6 by Oliver & Boyd Ltd., Edinburgh.



INDEX

Arithmetic mean, sez Mean
Average deviation, see Mean deviation
Averages, 51-68; see Mean, Median, Mode

Bias in sa.mp;ling, 141

Central tendency, measures of, 51-38; s¢6
Mean, Median, Mede

Class_interval, size of, 16-17, Ig-21;
Limits of, 17, 20-21, 24—27; midpoint of,

27

Coefficient of correlation, meaning of,
160166, 108—204; computation of, 167—
174; as measure of regression, 175-182;
in regression eguations, 164-107; as
measure of reliability. of prediction,
186-1go; assumption of rectilinearity,
1go-191; reliability of, 1g1—195; influ-
ence of range of talent on, 105-198; as
measure of test validity, zr3—235; as
measure of test reliability, 216218 *

Coefficient of reliability, 216-218; ways of
estimating, 218-220; significance of in
test evaluation, 223—227 \

Column diagram, sce Histogram

Comparable measures, see Percentilérank
a#d Standard scores AN

Composite measures, 150-152¢ )

Confdence, levels of, o451 O

Confidence interval, for ffue mean, 06—
108, 118-121, 13471363 for true Propor-
tion, 123-127 ~ A"

Continuous seriesqzs./

Cozrelation, muﬂiﬁ of, 153-1605 linear,
156; non-linear; 156; see also Coeflicient
of correlatial

Crude modey 61

Cumulative frequency, curve of, 4348

~

Cuayés, types of, 48-50; normal probabil- |

Qty; 8r—-101
Curvilinear relationship, 156, 190

Data, continuous and discrete, 24

Deciles, 32

Deviation, see Variability

Differences, reliability
139} see Standard error

Discrete data, 24

Distribution, frequency, see

Freqﬁency
distribution .

of, 12_594136,‘ 138— .

portance of in statistical work, 67; of
sampling, 102-143; of estimate, 86—
190; of measurement, zoz—213, 220~
223} see aiso Standard error

Fitting, method of, normal curve to obk
served distributions, gg-101  { %\
Frequencies, reliability  of percentage,
distribution, need ‘for. 11-12;

125-129
Frequency
construction of, 13-28; graphic repre-
gentation of, 39-50; cammilative, 42—46;
types of, 4849 )

Graphs, sce Histogram, Polygon, Cumu-
lative frequedty turve

Grouping, i{ﬁ uency distributions, 13
ff.; naturaly 21

o \

istopfanl, 30-4T, 4546; uses of, 50
a TRESCAER 100115, 130-136.
o 36139

\ ,ihdex of reliability, 223 (footnote)
“3| Interval, ses Class interval :

) Levels of confidence, rot—108

compuf.atidn of,
figures in,
of, 106~

Mean, definition of, 32;
'e2-60; number of significant
61-66; uses of, 68; veliability

123, 136138 .

Mean deviation, definition of, yo; con-
putation of, 71~74; characteristics of,
7780

Measurement, nature of in education and
psychology, 205-213 :
Madian, defnition of, 6o-61; computa~
tion of, 27; uses of, 68; reliability of, 124
Median deviation, definition of, 70;
- gcteristics of, 77-80
Mode, 61; uses of, 68

Normal probability cirve, definition o,

81; properties of, 81—85; ordimates

nder, 82-84; area relationships, 85-87;

pses.of in type problems, 83-g2; SIg-
nifiance of, 903-99

Normality, léw of, 9599

Null hypothesis, 120136, 138-13

. . o '..i
Etrots, in rounding numbers, 61-66; im-

Ogive, 4246




£

242

Ordinates, relations between, of normal
curve, 82-84 :

Percentages, reliability of, 125-129

Percentile curve, 4246

Percentile ranks, 32-33; computation of,
33-35; use and Interpretation of, 3738

Percentiles, 32-33; computation of, 35-37;
use and interpretation of, 37-38

Polygon, frequency, 4I-42,
smoothing, 46-48

Prediction, uses of r in, 158-160; use of
regression equations in, 184-192; re-
liability of, 186190

Probable error, 123, 125; see Standard
eIrOT -

Product-moment correlation coefficient,

" see Coefficient of correlation '

Proportion, reliability of, r25-129

Quartile deviation, see Semi-interquartile
TaDge

Quartiles, 32

Range, of a frequency distribution, 17; as
a measure of wariabi ibrary.org

Range of falent, effect on r, 197200
Ranks, 32 ' » 19

45-46;

Rectilinearity, 156; assumption of, AN

Regression, _phe'nomeno_n of, 17§-18:;’
equations in z-score form, I8z2;Jilvraw
score form, 185; uses of in prediction,
182—igo &

Reliability, meaning of, in samipling, 100~
101 ; of the mean, 100~12¥{ 134-136; of
the median, 124; of quartile devia-

- tion, 124; of theStandard deviation,
124; of differentes; uncorrelated, 129~
133; of correlated differences, 134-116,
‘138-139; @ _cents and proportions,
12512030 test scores, 215-227; CO-
efficie of, 216~220; significance of in
test{evaluation, 2:3—227

Sampling distribution of mean, 104~105

. Sampling, investigation by, 1oz fi.; ran-

\ “dom, 103, 140; errors in, 1oz ff.; biased,
141; controlled, 142; methods of, 139~
143; in test construction, zo8—211

Scatter-diagram, 154-155 ’

Scores, standard, 145 ) i

Semi-interquartile range, 7o reliability of,
124 " DR '

INDEX

Series, continuous and discrete, 24

| “Short” method, of computing mean, 55~

6o; of computing mean deviation, 71~
74; standard deviation, 75-77; coeffi-
cient of correlation, 167-174

Significance, statistical, 130-133

Significance ratio, 132

Significant, differences, 130-133; correla-
tion, 19I—1I05

Significant digits, 61-66

Skewness, 4849 .

Small sample theory, 136—13g

Sm%othing frequency distributions, 46-

4

Speatman, product-momedt) correlation
coefficient, see Coefficient of correlation

Spearman-Brown prophery formulz, 218~
220 \:

Standard deviation, definition of, 71; com-
putation of \g5377; characteristics of,
79—80; relighility of, 124

Standard error, of mean, 106, 1T5-124;
of median, 124; of quartile "deviation,

1243.0f $tandard deviation, 124; of per-
irgentages and proportions, 125-129] of
differences, 129-136; of correlation co-
3\ efficient, 191-795; of estimates based on
regression equations, 186-190; of meas-
urement (of test scores), 220-223
Standard or z-scores, 145-146; computa-
tion of, 147-¥50; used in securing com-
posites, 150-152
Statistics, purposes of, T-3; major aspects
of instruction in, 3-6; organization of
instructional materials, 6—9; how ta
study, g—10

Tabulation, of measures in frequency dis-
tributions, 11 ff,

Test scales, characteristics of, 29-31, 205~
213

Tests, uses of correlation in evaluating,
205-1227 :

“Frue” scores, 220

T-scales, 149

Validity, meaning of, 213; measurement
of, z14-215; relation of, to reliability,
223-227

Variability, measures of, 69-80; se¢ also

_Quagtile deviation, Mean deviation,
Medizn deviation, Standard deviatior
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